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SUMMARY

The first part of the present report deals with the theory of
elasticity of orthotropic plates. The general differential equation
of the bending surface of orthotropic rectangular plates whose principal
directions of gtiffness are not parallel to the plate edges (general-—
orthotropic plate) is indicated. The possibility of applying the theory
of elagticity of orthotropic plates to plywood is 1nvegtigated and the
relationship between the elastic moduli and the angle between the load
direction and the principal stiffness directions is described for
plywood of wvarious constructions.

The second part is concerned with the stability equation of the
general—orthotropic rectangular plate under uniform shear and axial
loads. This differential equation, which, compared to the differential
equation of the orthotropic rectangular plate whose principal directions
of stiffness are parallel to the plate edges, contains additional terms,
can be solved for a very long plate strip by the Southwell-Skan formula
for the isotroplic plate strip. Besides the exact solution an approximate
golution is given. For the most important practical case of orthotropic
plate strips, whose principal directions of stiffness are inclined at h5°
with respect to the plate edges, the buckling loads and buckling lengths
in pure compresgsion and pure shear are plotted against the stiffness
values of the plate. For the special stiffness values of plywood plates
of various constructions, the buckling loads and buckling wave lengths
were determined for all inclinationg of principal stiffness directions
(0° to 180°) relative to plate edges and also plotted for pure compressive
and pure shear loading.

*rBeitrag zur Frage der Beulung orthotroper Flatten, insbegondere
von Sperrholzplatten."
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I. INTRODUCTION

Thin plywood strips are frequently used in airplane designs as spar
webs, wing coverling, etc. They are subjected to forces within the total
assembly of the structural member which usually lie in its plane and
stress the plates in compression or shear. Since the plates are fre—
guently cut so thin that buckling under such loads is to be expected,
the knowledge of the critical loads at which the plates change from
their originally straight, stable position into a new, buckled position
should be of interest.

Being built up of plies at right angles to each other, the plywood
plateg are regarded as orthogonally—enisotropic plates (orthotropic
plates according to the term introduced by Huber). By its construction
the stiffness of the plate is dependent on the position of the elagtic
axis relative to the directlon of the fiber (grain).

Although the plywood plate cannot be termed completely homogeneous
because of the violent property flunctuations over the wall thickness,
the subsequent investigatlions of the buckling stiffness of orthotropic
plates nevertheless are generally made for a homogeneous orthotropic
and elastic material. The effect of the incomplete homogeneity of the
plywood plate on the stiffness, etc., is particularly investigated.

The problem of stability of orthotropic plates has been treated
by C. Schmieden (reference 1), Bergmann—-Reissner (reference 2), and
Seydel (reference 3), with special reference to the case of pure shear
loading in connection with the Southwell-Skan investigations on the
stability of isotropic plates (reference 4). Basic investigations on
the orthotropic plate have been made by Huber (reference 5) who also
get up the differential equation of bending of the orthotropic plate.
Further data on the stability of orthotroplic plates, including the
data on buckling load under compressive stress, are given by Timoshenko
(reference 6).

But all these reports deal only with orthotropic plates with
principal directions of stiffness (on plywood, the directions of the
grain of the inner and outer ply) parallel to the edges of the rectan—
gular plate (termed "special orthotropic plate" hereinafter). For the
use of orthotropic plates, especially of plywood, as spar or wing
covering, however, the knowledge of the buckling strength of plates
with principal stiffness other than parallel to the edges ig of interest.

In spars with plywood webs the direction of the fibers is usually
at 45° to the flanges, since under shearing stress — apart from an
increase in shear stiffness — a substantial increase in buckling load and
hence often algo in the ultimate load of the web relative to a plate
fixed parallel can be obtained.
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In order to include these important practical cases also, the
problem of buckling of special—orthotropic plates, so exhaustively
explored by Seydel for shear load, is extended to include the problem
of buckling of orthotroplc plates with arbitrary principal stiffnesses
relative to the plate edges (termed "general—orthotropic plate”
hereinafter).

II. THEORY OF ELASTICITY OF THE

GENERAL—-ORTHOTROPIC PLATE

The investigation of buckling of the general—orthotropic plate
requires a closer insight into the elasticity theory of such plates.
The general—orthotropic plate is characterized by the inclination of
the principal stiffness directions (of the principal axes system) of
the plate with respect to the coordinate system to which the stresgses
and strains are referred. ZFor the special—orthotropic plate, the
principal gystem of axes is coincident with the coordinate system
(figs. 1(a) and 1(b)). The inclination of the principal system of
axes with respect to the system of coordinates of the plate necessgitates
a congtruction of the laws of elongation of the general—orthotropic
plate which, compared to the strain laws of the special—orthotropic
plate, contains additional terms. Whereas the elastic properties of
the special—orthotropic plate can be defined by four elasticity
congtants, the identification of the properties of the general-—
orthotropic plate requires the knowledge of six constants. Hence,
aside from the stress—strain law — as will be shown in the subsequent
gections -~ the differential equation of the bending surface, and the
equation of energy of the general-—orthotropic plate for the bending
of these plates (both equations being used for the further investi—
gation), two additional terms are obtained which contain these new
additive elastic consgtants.

1. The General Stregs—-Strain Law of the Orthotropic
Plate (Plane Stress Condition)

(a) The Elongation Equations

The law of elongation of the general—orthotroplc plate can be

written in the form (reference 5)

€x = 0q1"0x + aqploy ooyt )
€y = 9g1'ox * dppldy + apz'r % (1)

- L L] 3.
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The moduli of elasgticity a' for the coordinate system xy are
dependent on the angle w of the system, which the principal axes
system forms with the coordinate system. (These general moduli of
elagticity are hereafter denoted by a'ik’ the special moduli (for the

cage w = 0) with aji.)

It can be proved (reference 5) that the symmetry conditions
ajo' = anyt, a13' = “31" and a23' = a32' exlist, hence that the

elongation law of the general—orthotropic plate is represented by six
elastic constants. '

The moduli “13' and a23' in equation (1) are a measure for

the elongations due to shear stresses in the general case (o % 0) and
the displacements induced by axial stresses, respectively.

These moduli a13' énd a23' disappear in the case of the special

orthotropic plate (w = 0) as will be shown later, so that this case is
characterized by four constants.

Introduction of the conventional reciprocal expressions for the
moduli of elasticity

1 1 Vi1 Voo 1
A1} = o5 Gpp = o5 Q1p T Qpy Fo=m— S T —/——) Qg3 = =
17 By’ Epp E1 Epp” 337G

gives for the case of special orthotropy the equations:

1
€x = %19¢ * %20y = By (©x — v119y)
€, = Qo0yx + Oy = =1 — Vono ’ (1a)
y 129x + U0y P 22
T
= QagT = =
7 T3 T ]

On top of that, ay; = Aop = %3 for the case of the isotropic plate,

so that the equations of elongation read:

1
ex = G..llO'x +.G4120'y = E (Ux - VO'y)
- =L
€y = @120x * %10y = g <§y - VG%> ¢ (1v)
— = 1—-—
Y = CL33T G
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And since a further relation can be established between the
modull ajj, ajp, and @335 the elastic constants for isotropic

- material are reduced to two.
(v) Determination of Moduli of Elasticity

For the general—orthotropic plate, the elastic constants in
equation (1) are dependent on the angle « formed by the principal
axes of the orthotropic plate with the coordinate system. In the
following, the moduli of elasticity for any system of coordinates
orientated with respect to the principal axes of the plate are determined
in relation to the moduli of elasticity for the principal axes direction
and the angle formed by the coordinate axes relative to the principal
axes.

From a general—orthotropic plate element of which one principal
axis 1s inclined at angle o to the x axis, a rectangle is cut out in
such a way that the edges of the rectangle lie parallel to the principal
axes of the plate element. The plate element is loaded along its edges
by the stresses oy, O and T (fig. 2). These stresses in turn introduce
stresses a3, 0o and T, at the cut—out rectangle, which can be

| indicated immediately for the plane stress condition with the aid of
the conversion formulas

L

- 2 s S i

i 071 = Oy CO8“w + 0, 8in“w — 27 sin w cos w

il l X y

] o 2

b 0p = ox sin“w + oy cos“w + 27 sin w cos w (2)
J Ty, = Ox gin w cos w — Oy gin w cos w + T(COSEw - singw)

Denoting the diagonal of the rectangular element parallel to the
X axis with 1, the sides of the rectangle have the lengths sin w
and cos w (fig. 3(a)). ILet Alj; and Aly, be the displacement

components of a rectangular point of the element digtorted by the
stresses o3, 0o, and T, along the edges of the rectangle. The

displacement components of the rectangular point along the x axis, that
is, the elongation of the rectangular diagonal of magnitude 1, can be
read from figure 3(b) as

€x = Alxy = Aly cos w + Alo sin w (3a)

ek S



6 | | - NACA TM 1263

The angle of shearing strain through which the connecting -line of the
distorted rectangular point has turned with respect to its original
position — that is, the x axis — is (fig. 3(b)):

*
Yy = 2[;&11 sin @ + Al, cos 43 (3b)

From a corresponding rectangular element, whose diagonal of length 1
rung parallel to the y axis, the displacement component of the rectangular
point and the elongation along the y axis follow as

€ = Aly = Aly sin @ + Al cos w - {(3c)

The displacement components Aly; and Aly, along the rectangular sides

consigt of displacements due to axial strain, transverse contraction,
and shearing strain of the rectangular element.

From figures 4(a) to 4(c), where the several contributions of
the deformation strain are represented separately, follow immediately:

(a) The displacement due to longitudinal deformation

Aly = €7 cos w = 03037 COS @
(ka)
Aly = €5 8in w = gpton sin ®
(b) Displacement due to transverse contraction
Aly = €Q; ©OS w = 0pd1p COB W b
> (4b)
Ay = ¢ in = 07070 8in w
2 = €q, sin w = 01090 ]
(c) Displacement due to shearing deformation
gin w in ]
l = = <) @®
A 1 70 o TOa'33 o
S (kc)
Al. — cos » _ cos W
o) 75 = TOG33 5 )

x .
NACA Reviewer's note: This equation was incorrectly written as
2y = -All sin w + Alg cogs @ in the original German version of this paper.
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The expressions (la) to (4c) introduced in equation (3a) give

the elongation €y

“ex = Ay = Aly cos o + Alp sin @

sin w cos w

€Ex = ola.ll COSE(D + 02(1.12 0082(1) + TOCL33 >

sin w cos w
2

S A e e

+ Oolon sinew + 01“1'2 sinew + TOG.33

The stresses oy, 0o, and can be replaced by means of the

To

equations (2) by the stresses o and T, so that the final expression

o]
X y
‘for the elongation ¢, of the general—orthotropic plate reads

L

w + (20(,12 + a33) sin2

¢V} COS2

® + Ao sinha)]

€x = Ux[a'll cos

+ U.V[(all + a22)0032(n sin2a> + ajo (cos)'"a) + sinl*a)) — or,33 cosew sinea)]

+ T[—2 (O"ll cosCw — apo sinea)) sin o cos w

+ (20:,12 + a,33) sin w cos w (cosea) - sinzw):l (5a)

The shearing strain of the general—orthotropic plate follows
from equations (3b) and (4a) to (k4c) as

Y = Ux[—2(°~11 cos®w — oo sinEw) sin w cos w

+ (2(112 + a33) gin o cos o (cos?w — sinew)_

+ 0'y[—2 (“ll si_nem — 0o 00520)) gin w cos w

- (2&12 + a33) sin @ cos (cosem - Sinew):

+ T[h (aq1 + app - 2“12) cos?w sincw + ag3 (cosew - sin2<b)2] (5b)
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The elongation €y can be found by corresponding considerations
from equation (3c) as .

€y = ox [(a‘ll + CL22) cosZp sind

2 4

+ oy [“ll sinfe + (2095 + a33) sinw cos?w + app cos w}

+ 7T [—2 (C‘*ll sinZw — Qoo cosea)> sin w cos ®
= (2oyp + OL33) cos o sin o (cos2w — sin%u)] (5¢)

Comparison of the coefficients of equation (1) and (5) yields for
the moduli of elasticity of a coordinate system inclined at the angle
relative to one principal axis, the followlng relations

4

. 2 .
W + (2@12 + oc33) su:?w cos“w + app sin

l,-(l)

a1y ocll cOSs

N

< w

a22' = G’ll sinha) + (2&12 + a,33) singa) cos“w + apn CO8

2(1) + 0 cosha) + sin)*a)) - a33 sinea) coseu.)

‘112' = (a'll + (1,22) cosga) sin

W + Ao (cos)‘La) + sinl*a)) - ass sincw _cosga)]

@

¢ (6)

az3' = h(“ll + Uy = 2(112) cc;sgw sin®p + as33 (coggw - sin2w)
0“13' = =2 (0"11_ costw — Qoo sinew) sin w cos w
+ (2(112 + a33) sin w cos w (cosza) - sin2w)
a23' = =2 (c"ll sinw — apo oos2a)) sin w cos w
- (2@12 + a33) cos w sin w (cosew - sin2w) J

Ag essential result of the determination of the moduli of elastici
it is found that the six constants of the general—orthotropic plate can
be derived from the four constants of the special-orthotropic plate
(principal direction constants o3, opp, o3p, and «33), so that

additional experimental determinations of moduli on plates beyond these
four quantities are not necessary.

ty,
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For isotropic material, the conventional relation between the
modulus of rigidity, Young'!s modulus, and transverse contraction exists

a ' - R
—_2'(1 + V) (")

It is logical to expect a corresponding relation for orthotropic
material, so that here also the experimental determination of the
modulug of rigidity would be superfluous.

The modulus of rigidity of a general—orthotropic plate 1s according
to equation (6)

azg? = h(all + oy — 2a12) sinw cosw + agg (cosew - sinehbg (6a)

Thig relation indicates that the modulus of rigidity a33' is

independent of the modulus a33 valid for the principal direction of

the orthotropic plate only when w = 45° (hence, when the directions of
the principal axes of the plate coincide with the principal gtress
directions in pure shear) and that the dependence is limited to the
moduli of elasticity and transverse contractions in the principal
directions. Hence, in this case

t - —_
azg’ = apy + Gon 2a12 (8)
Written in the conventional manner, equation (8) reads:

o 1 Ey1Eop ()
= == a
1,1 v Yee Ejp(2+ Vop) + B @ +vip

Hertel (reference 7, p. 135) also derived this equation for this
particular case (w = 45°) for the shear modulus of plywood (reference 7).
In all other cases (w # 45°) the determination of shear modulus a33'

is predicated on the knowledge of shear modulus 33 for the principal

axis (w = 0). Even in the case w = 45° “the experimental determination
of 33 cannot be dispensed with, since modulus 33 must be known in

order to determine the moduli of elasticity aj;', a22 , and a12 » in
this direction, according to equation (6).
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So, in contrast to the isotropic plate, the experimental determi—
nation of the shear modulus a33 independently of all other principal

elagticity moduli is necessary in every case.

In this connection, another particular case of the general—
orthotropic plate is pointed out:

If, as may happen in measurements, the relation

A+ Gpp — 2ayp = 33

exists between the moduli of the principal axes, the moduli of the
plate in the remaining directions (w # 0) are

-
a:le' = Gle = Constant

a33' = a33 = Constant .
all' = Qg7 cosuw + (all + a22) sinew cosgw + oo sinuw

(10)

a22' = aqq sinuw + Q?ll + a22> sinaw cosgw + ano coshu> F
aj1f + apo' = aqy + dapp = Constant

Qo' = L R - gin w cos w

13 do3 (ﬁgg 11) J

as is readily apparent from equations (6).

Thus, in this particular case, the modulus of shear and the
modulus of transverse contraction are independent of the angle of
direction, while moduli aj3?, app'’, a3', and ap3® continue to be

dependent on w.

A particular case of thisg kind, in which the general-orthotropic
plate has isotropic properties with respect to a33' and ajo', is

represented in close approximation by a three—ply beech plywood plate.
(Compare Section II 5, fig. 18(a).) .

For completeness the derivation of (7) governing isotropic naterial
from equations (6) and (10) is included.



PO,

e

=

NACA TM 1263 : 11

For isotropic material all modull must be independent of w, that
ig, be constant in every direction. The requirement is met, according

~ to equations (10) when the following relations exist:

a1 = App
(11)
Gy t+ App — 2ayp = ags3

Utilizing the first equation of (11), the second takes the form

and this equation corresponds, in different form, exactly to the
relation (7).

Equations (7) show further that the modull of elasticity al3'
and a23' disappear for = 0° and 90°, that is, for the principal

axes directions. They also disappear for the particular case w = 450,
when the principal moduli of elasticity a7 and apo are of equal
magnitude.

It is to be noted further that in the case o = 45° the relations

it = app' and ay3t = apgz'

are valid.
(c) The Stress Equations
To continue the study of the orthotropic plate, the presentation
of the stress condition in the plate in relation to the strain condition
18 required. These relations can be obtained from equation (1) by

golution with respect to the stress components. The ensuing equations
have the form

ox = 81y 'ex + ajptey + ay3"y

Oy = 8py'ey + apptey + Apq'y ' (13)

T = a3l'éx + &32'€y + 5.33'7
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The connections between the elasticity moduli o' and the elastic
paremeters a' may be obtalned according to the rules of solving
equation systems.

Accordingly

_ALL =%9.; T=éAE1 (14)

where A represents the determinants of the system of equations (1):

A=lapyt  app'  apy! (15)

while the quantities Ai’ A?’ and A? are indicated by the following

determinantg:
€x G0’ 0‘13' c"J_l'_ €x %3’ a1t o' g
N = [y app! apg! Ly =o' €y a3t A3 = fooyt app' €y | (16)

7 agp' ags! apn’ 7 azgz! agy' age' 7

The solution of the determinants (16), while making use of the
equations (14), gives

Loy = (“22'“33' - ap3te)ey + (‘“12'“33' + OL13'("23')%
* ("12'0‘23' - O‘22""13'>7

toy = (‘“12'“33' ¥ OL13""'23')‘5x ¥ (“11"133' - c’v13'2>€y (17)
+ (“12'“13' - OL11"1'.a:<;'>7_

at = (0‘12'“23' - “22'“13')% + (“12'“13' - OL_u"l~a3'>€y

o (“11'0‘22' = °'~12'e>7
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The solution of the determinants gives

A =gy tagptass? —'(0‘11’0‘23'2 +agplag3’® + “33'“12'2> + 20p 003 an3"

. (15a)
As can be proved after considerable calculation by introcduction
of (6) in (15a), quantity A - for an orthotropic plate with properties
defined by the four principal constants — 1s an invariant, which is
independent of the position of the coordinate system relative to the
principal axes, and which gives

A = agzlagyopny — alé%) (15b)

Comparison of the coefficients betwsen the equations (16) and (17)
gives the connections between the elasticity moduli o' and the elastic
parameters at:

Loyt = applagst — ap3t?
fayp' = Lagy ' = —ayplagzt + o 3tansg?
AB‘22' - allla33l - “13'2
(18)
faz3t = agtappt - app'?

baj3t = lag !t = ogplaggt — agolag gt

1

23: = &321 a123a13| —“ll'a23'

The equations (18) indicate that the six elastlic parameters at
of the general—orthotropic plate, like the elasticity modulil o', can
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®

be represented with respect to the four elagticity moduli aj3, ano,
ajo, and 33 of the special—orthotropic plate in the principal
directions, and which gives, after 1ntroduct10n of equations (6)

in (18):

a1 = L cosZe sine + a3l sinfo + apo cosl‘La) ~ 2a79 cos®w sinZe
11 "«
o - 11%e2 ~

@71 coste + ano sinl*a) — 2a10 cos?w sin®w

annt = _4_ cos?w sinw +
22 x

- 2
33 A3%p — Xp
o4 + cos2w sinZw — o n +
ajp’ =-—LJ—— cos?w sin“w + ( 11 aQQ) 8 12(81 w T cos w)
"33 a11%p — 0L12

(sinem - 0052(192 N (cc]_]_ + apo + 2(112>COE52(D sincw
%33 a13pp ~ 0@

233" =

~a1] 8inw +an, costw— ale(sinzw —coseu)>
al3' = —co8 @ Sin w r(sin%—cos%) 5 _1
@ 30p2 — a1

aly cosz(n-—azz singu)-—onlg (Sin2w_ cos%) .
2 _J

cos w sin w %(sin%n —cos2a>> +

33

323
A11%00 — X2

(182)

In the case of the special—orthotropic plate, the expressions for a
are considerably simplified, since cLl3' and a,23' disappear, and result

in the conventional relations already indicated by Huber (reference 5):

*
These two equations were incorrect in the original version of the
paper and have been corrected by the NACA Reviewer.
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_ aPp033 Qpp - _ Enn
811 = —x <% 5
a1%0p — @1p° 1 = Vilvee
app0 a] Eop
8.22 = 1 33 = > = T "
a1%2 ~ %2 11722
—0] 9033 —o1p v11E00 Vooliy o
a12 = = - = = - (19)
o 1%0 10" 11Ve2 11 Vo2
M1%p = M2 1
a = = G
al3 = a23 =0

| ]
The stress equations of the special—orthotropic plate rcad then:

o = _Pé.l_. GX + E?E_ €
X
1 = viivop 1 —wviiven
Vv
E
. - oof11 - 20 (20)
Y 1 x 1 V.V Y
— Vilve2 — V11Ve2
T = G.7

The further simplified constants for isotropic material read:

8y = 8pp = ——3; 81p = -——-—2; az3 =G | (21)

and the stress equations take the conventional form

ox = -ﬁ (Gx + vey>
oy = -—E——(vex + ey) _ | (22)
1 —v2

T =G7

g
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For'the_subsequent applications, the elastic parameters of a general-—
orthotropic plate for the case w = 450 are also of interest.

Equations (18a) give for this case:

1 q %11t G T 2%, y Faa + Fop + 2V1afipp

ayy' =app’ =g+ === = G+
G33 W 4% — 9o z 1 — vy Voo
11 % T % T %p 1 B Eop * 2VaEas
ajo' = — - b 5 G + m Ty (23)
33 911%02 T %12 11ve2
Tt Oq + Gy * 2a12 1 Ell + E22 - 2V11E22
33 7 L _
Yaggopp - 0P b L= V11
‘.
i 813" = 8y = % ‘11T %2 _1fer
_ 2 b
a11%p ~ %1p 1 =ViiVop
In this particular case
t = t T = 1
a1, 8op and a13 a23 (23a)

for both the elastic parameters as for the moduli of elasticity.

It further follows that the constants al3' = a23' disappear, when
the principal moduli of elasticity Ej;; and Epp are of equal magnitude.

The representation of the buckling loads (determined in the second
part of the report) for the particular case = 45° and 135°, respec—
tively, is referred to the two stiffness ratios.

Doyt t D' ajnt' + 2agy!
2 a 12

23ty gy 233 33
22 8op Dot a22'

A limiting value consideration for these two expressions is added
at this time.

¥*
This equation was incorrect in the orginal version of this paper
and has been corrected by the NACA Reviewer.
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1
‘With equations (23) the stiffness ratios Egi—. and<,933— can be
repregented with respect to the modull of elasticity of the principal
axes; they then assume the form :

N = C j"n"ee) 5o (3-2wy) + 3

E
11
532_' T e Epp (&%)
Yy (1 - v v 1+ 2v + 1 '
B, ( 11 22) Ell ( 11)
Boo 1
Dy3' B
23 - (24b)
P T

G
I Ny (x - vy 00) * & (1 +2v )+ 1

]

D33

The limiting value which D

Dot P2

1s =33 =3 and for the limiting case E,p = O
D22' 2

can assume for the limiting case E; = ©

Dygt —uEi(l = V1Y) * 3

D 1
22 (l v ) + 1
Ell ll 22

The modulus of shear can assume values between O and «: for

D t ’
G = 0 the result is again 53i =3 and for G = w, 933— = —1. Like—

' D
22 22"
: D33' D331
wise, it can be shown that —— = 3 for E22 = o, and —==<— =3 and -1,
Dpy? Doyt '

respectively, for Ej; = 0, depending upon whether the modulus G takes
the value 0O ‘or w. ' '
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The: elimination of term 4 ———-(l "V11V22) from the two equations
D33’ De3’
for —— and leaves a relatlon betwaen these expressions from
D i
22 22

which tlhie terms with v cancel out:

. Eoo
D23! D..'\ E
)4- e ={1 + 33') 11
DE‘E D22 Egg 1
Ell
Eop Eoo
The factor { — — : —+ 1 agsumes values between -1 and 1,
E E
when T passes through all posgible values between O and =, go that
11
D 4§
the limiting values of 5§§7 follow the equation
: 22
D 4
_ 1+ D33t
23 4 22 (2kc)
D ¢ L

Dt
Thig investigation indicates that the pair of values =23

Doo!
and 5337 exist only in a field that 1s bounded by the two straight
22 .
lines
D,,1 D3q!
o 1+ 2330 I =
23 Dop! 23 D"
and_D =—____22_
Doo 4 00 4
Di

and by the straight line —337 = 3 (fig. 5a).
22



NACA TM 1263 . o 19

| 2. Bending of General—-Orthotropic Plates

The theory of bending of general—orthotropic plates follows the
classical theory of bendlng; hence, first of all, the assumptions that
the plate thickness is small and that the deflection of the plate itself
is small compared to plate thickness.

On the bagis of the coordinate system.conformable to figure 5b, the
intersection moments of the plate read as usual

- /2 5/2 s/2
M, =fs o2z dz; My = f o/ gyz_dz, - =f Tz dz (25)

—g/2 —s/2

The condition of equilibrium between the specific load p of the
plate applied at an element and the moments M., My, and Mxy reads:

*
32 3°M 3°M

e + 2 Xy 4 Yy p=o0 (26)
52 3y 552

This equilibrium condition is independent of the elastic properties
of the plate, and holds for the isotropic as for the orthotropic plate.

The plate is bent by the moments. Assuming, as usual, a linear
strain distributlion over the plate thickness, a point of the plate
distant by x from the center is, as a result of the curvature of the
plate, subjected to the distortion

2
e = = &% . (e

<
Il

b

. N
(%
£

w = deflectlion of plate.

—

*Corrected by NACA Reviewer.
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Introducing the stresses of the general-orthotropic plate in the
expressions (25) for the moments of the plate according to equation (15),
while replacing at the same time the distortions appearing in these
expressions by the equations (27), gives the moments of the plate, when
the integral is extended over the plate width, as:

s/2 s/2
Mx = f 0y Z dz = f [all’ex + 8'12' ey + al3'7]z dz

—-g/2 —s/2

s3 d° O%w %W
Me=—13 Gll' gx_2+812 g* 2a; 3 a—x;

8/2 a/2
M = f oz dz = / [8. 'E + a22'€ + 3 '7]2 dZ
J /2 ¥y —s/2 21 “x y 23 7|

—s
(28)
3 Pw % 62
M, = — 82 a t — =~ + g ' —— + 21 —
J 12 12 axg 22 ayg 23 axy

s/2 g/2 _
Mxy =/:S/272 dz =L/2 EaBl'Ex + a32'€y + a33'7]z dz
M, = — S3 i". + . Pw + 2a 6_2_
¥ 13 32 823 3y2 33 xy,

The second derivatives of equations (28), formed and entered in
the equilibrium condition (26), give the differential equation of the
elagtic surface of the general-orthotropic plate:

g3 Sty 8’*

= J]a — + ka " Pa + La
12 1’ ax* 13 dx 33 ( 12" 33) axeay
+ 4&23' ahwl + 'a22t éh_w -p=0 (29)
> 3xdy3 oyt
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and, after the abbreviations

Dy;' =158’

3 o
D33 = %5(&12' + 2ag;") (292)
3
Dyt = 82 g 1t
1377 15 713
3
Do3' = 13 @23’

the final form of the differential equation as

4 L L by, b

D t
1 6x38y 33 axeay 3 oxdy 3

(30)

Compared to the differential equations of the elagtic surface of the
lsotroplc and orthotropic plate, respectively, the additive terms with
the mixed derivatives

an
x>y 6x8y3

appear; they ldentify the contribution of the elastic parameters 813'
and a23 - on the absorption of the load p.
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For the gpecial-orthotropic plate, Dl3' and D23' disappear and

the remaining constants agsume the form indicated by Huber:

I B
11 1231 - V91 Voo
Dy, - 8322 | (31)
12 1 — wq Voo
3 Eop E13
2Daz = 2 [y ————— + v, ————— + 4G
33 712\ 4 — V1150 2 1 V11Voo

The differential equation of the elastlic surface of the special—
orthotropic plate reads then

Sy 3w M
—_— 2D33gx—2-gy§+]322_—13 (32)

D
11 o™

For the isotropic plate, when noting that

Fl1 = Epp = E

Vll=V22=V
R
l_
oo L=v)
2(1 - v°)

can be put in (31), 1t finally gives




:
;.

2
L
]

%
jo
Mt
3
#
i
]
5
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and the differentigl equation can be written in the conventional form

dw + 28hw + dlhy
L 2N, 2 N4
ox Ox“dy oy

=5 | (33)

3. The Internal Flexural Straln Energy of the
General-Orthotropic Plate

The internal strain energy of a plate can be generally represented

by the relation
2A I/f[ + oge +ri|dxdydz (34)
If the stresses o

x» Oys T 1in the bracketed term of equation (1)

are replaced according to equation (13) by the corresponding distortions,
the equation for the general—orthotropic plate can also be written in
the form

i 2
2hy ‘M Ell'ex * appteyty * aj3lre,

*oapytegey * a22'€y2 + ap3'ye
+oag'yey *agpley + a33'7é]dx dy dz (35)

If the plate 1s stressed in bending by moments, the flexural
distortions €y, Ey’ and 7Y can be expressed again by the corresponding

prlate curvatures, (equation 21), and gives, after integration with
regpect to plate thickness 8, the internal flexural strain energy of the
general orthotropic plate

. 2 2
_ 3][ 32 320 32 32 32y 32y
Ay =350 [t <ax_g> * 22t T A+ axp! () + ey —ax—; axy

.
B @y oo
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For i1sotropic material, all' ='a22' = ajy; in a@dition, the
constants al3' and _a23' disappear and the flexural energy follows as:

2 . | '
L/j/ 11(62w> ( ) + 2&12 a2w 82w + ,-1-8.33 ( dx dy (37)
3y° 32 dy2

If, instead of the constants aj;', a;,, and a33 the customary

reciprocal designations are used again, equation (37) can be replaced
by the known expression for the internal flexural strain energy of the
isotropic plate

. 2 \2
_ EE G\jgp 1 §§E> 62w 2 32w 2w + 0 o) f) ax dy (37a)
2 1 -7 |\ax? ay T 7 3x° 3y C\ox

Y,

4. Experimental Determination of the Moduli of Elasticity
of the General-(Orthotropic Plate

The elastic properties of the general—orthotropic plate: are
characterized by six modull of elasticity. Inasmuch as, according to
equation (6), the six moduli of the general—orthotropic plate can be
determined from the modulil Ay1s Aoos Aqos and a33 for every direction

angle , the determination of these four moduli is by itself sufficient
for a complete identification of the elastic properties of the plate.

But for an experimental check on the relationship between the moduli of
elagticity represented in equation (6) and the direction angle w it
geems appropriate to have a method available which permits the determina—
tion of all six modull of the plate.

(a) Pure Axial Stress Condition — Pure Shearing—Stress Condition

Nadai (reference 8, pp. 355 ff) pointed out that two stress atti—.
tudes, the case of pure axial bending and the case of pure twisting
of a plate (figs. 6, 7), are particularly suitable for determining the
two moduli of elasticity of isotropic plate—shaped bodies. The boundary
conditions in both cases are easgily established and the deflections of
the plate readily indicated, since the central area of the plate assumes
a geometrically simple shape in these loading conditions.
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The determination of the moduli of elasticity from bending and
torgion tests, especlally for plywood plates, which by reason of their

inhomogeneous structure

over the plate thickness manifesgt different

elasticity modull in bending than in plane streas,- (see section 5) has

.the -advantage to tle éxtént that the decisive moduli, necessary for the

Invegtigation of the plate stability, are already obtained this way for
bending and torsion stress.

Nadai's method for
the general—orthotropic
with it. :

A relation between

igotropic plates can also be extended to include
plate and the six modull of this plate computed

the stresses I1ntroduced by the. loading and the

deflection of the plate is obtalned by equating the distortions ey, ey
3
and ¥ according to equations (1) and (27) to each other:
- Pw _
€x = 2 5;5 = apytoy + apploy + aggtr
€ = —z QEE-= A15'0, + Gonlo, + anatT (38) — {1
y o2 20X 2%y 3 J
2
7 = =22 9—3-= a13'cx + a23'6 + a33'T
Xy y

On agsuming a uniform tension stress and shearing stress attitude,
the gtresges in the plate are constant.

Putting for the stresses in the outer layer z = %

of the plate

Ox = Oxo; Oy = Oy, and T = 7, equation (38) can be written as
agﬂ.:_g( T + r ]
S - s lartox, +ampoy a3 o)

%W

5y2

92w
oxy

_g( t + 1
s \M12 %x, T %22 0y

1
— T g (013'03[0 + a2310-y

* CL23'T0) (38a)

° + 0.33'1'0)
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The general form of a function which satisfies equations (38a), ig

Oy ' g
T
- ?f (a13'x2 + a23'y2 + a33'xy> + C1X + Cpy + Cg (39)

where the remaining terms cqX + cpy + c3 are disregarded as unessential

gince they merely define the position of the plate 1in space. Limited to
the case that the plate is deformed in the plane only by a moment My,

it results in a pure longitudinal stress condition and, since Uyo and To
disappear, the equation of the elastic surface — after putting

reads

6
w o= —%ﬁ (qll'xg + ale'ye + a13'xy> (Loa)
8

If the plate is stressed by a moment My only,

6
w = —gz-(ale'xg + a22'y2 + q23'xy> (40b)
8

If the plate 1s sgtressed by Mxy moments only, Oyo = Oyo = 0, and
deflection function w 1is '

bmy
= 2 2 2
W= T (a3t apyta® + a3357) (40c)
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On the isotropic plate, a pure longitudinal stress condition, that
is, a load due to bending moments M, or » produces pure bending, a
load in pure shear, that is,-a load due to twisting moments Miy’ produces

a-pure twist. -~ (The term with "xy in eqﬁaﬁion'(#Oéf“dnd.(hbb) disappears
for. the isotropic plate, because u13' = u23' = 0, the elagtic surface is

therefore symmetrical to the coordinate axes, that is, pure bending results.
The terms with x2 and y2 in equation (40c) disappear, the elastic

surface is antisymmetrical to the coordinate axes, hence pure twist). But
on the general—orthotropic plate, bending moments, as well as twisting
moments, even 1f applied separately, induce bending and twist simultaneously.

- Equations 40a to 4Oc indicate further that the pure longitudinal
stress attitude is suitable for determining the moduli

a1t app's oty @3t apgt
while the pure shedring stress permits the moduli a13', a23', a33' to
be measured. Consequently, moduli a13' and a23' can be obtailned by
elther one of the two conditions, but the modulus of rigidity a33'

only by the shearing stress, the moduli of elagticity and transverse con—
traction moduli aj31', a22' and alz' only by means of the pure longl-—

tudinal stress condition. ZExperimentally, the task can be confined to
measuring the moduli ap3', ans' and a;,' for the longitudinal stress,

and the modull ag,?', ' and aq44;' for the shearing stress condition.
1372 %23 33

(b) Experimental Determination of the Moduli bf Elasticity

The measurements for the determination of moduli all', GQQ', and

a)jo? are, according to Nadait's proposal, made on a plate strip supported

at three polnts. The bending moment producing the pure lontudinal stress
in the plate is applied by means of linkages which load the plate in
three points (fig. 8). The deflection 1s obtained from the difference

of the readings of three dlal gages mounted on the x axis. By
equation (40a)
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for the x axis (y = 0), hence for modulus ay1', when the two outer
dial gages are spaced at distance x from the central gage,

3
Wy S

1
a‘ll' = —2 ()-I-l)
bm, x
A corregponding measurement on the y axis gives
3

WS

J 1

Ty ¥

while appropriate variation of the direction of the principal axes of
the plate with respect to the coordinate axes gives

w_g3 1
Aot = J ) (43)
6my y
and
3
w.. 8
G2’ = 6x = (k2)
m.y x
respectively.

The measurements for the determination of the moduli a13', a23',
and a33' are made on a square plate which is loaded according to

figure 9. The loading produces a pure shearing stress since, (refer—
ence 6, pp. 299 ff) the twisting moments m.y occurring at the

boundary of the plate can be replaced by two equal and opposite trans—
verse forces @ normal to the plane of the plate, in the corners of
the plate. The total single force in a corner is

P=2Q=2my

The measurement of modulil a13’ and a23' is similar to that of

all' and ale'.
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If the deflection of the plate is measured along the x axis
(y =0) ' |

(L)

follows from equation (40c), where x again denotes the distance of the
two outer gages from the central dlal gage.

Measuring the deflection w, along the y axis gives the modulus

y
. wyed
o3z’ = 5 (45)
3Py

The modulus of rigidity is defined by the measurement of the
deflection of the plate along itg diagonals (fig. 9). According to
equation (40c), the deflection of the plate in the zero point on the
diagonal 1 gives — the outer dial gages being mounted at the points
X=y=>b, and x =y =-b

B (g2 s )
8

and on diagonal 2 with the corregponding points x = b, y = b, and
x =-b, y =b:

- 3P 2 2
Wo = 23-(a13'b + a.23'b2 - a33'b )
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Forming the difference leaves

. 6
Wl —Wo = :.g (133

and hence the modulus of rigidity a33' as

(v =)

(46)
6Pb=

@33’

5. Plywood as Orthotropic Plate

(a) Application of Theory of Elasticity of the Homogeneous General-—
Orthotropic Plate to Plywood

Since the results of the present report in their practical appli-
cation are primarily intended for plywood, it is necessary to explore
the extent to which the theory of elasticity of the homogeneous general-
orthotropic plate is applicable to plywood.

Whereas the ordinary wood veneer can, with some Justification, be
regarded as a plate of orthogonal, anisotropic homogeneous material to
which the theory of elasticity, and particularly also the theory of
bending of the orthotropic plate, can be applied, the combination of
gsingle veneers at 90° to each other into plywood also presents an
orthotropic plate, but inhomogeneous over the plate thickness. In
consequence, if the relations applicable to homogeneous material are
formally retained, the moduli of elasticity of a plywood plate agsume,
in part, different values for stresses in its plane than for Stresses
which tend to deflect the plate out of its plane.

For a speclal-orthotropic plate consisting of three identically
thick beech veneer plies, for example, whose veneers by themselves show
the moduli of elasticity E; = 180,000 kg/cm2 and E, = 5,000 kg/cm2

regpectively, the agsumption of equal strain of the glued laminations
under longitudinal stresses in the plane of the plate, with transverse




R S

"NACA TM 1263 . 31

contraction dlsregarded, gives the modulus of elasticity Ey in

x direction (fig. 10) as

28m +8E, om +E, *
28 ® 2
E =2EF _ 3 3 5 _ "% 2 151,700 kg/cm?
x F 8 3

and in y direction as

.El +'2E2

Ey = = 63,300 kg/cm?

3

But, gtressed in bendling by moments about the x or y axis, the
retentlon of linear straln distribution over the plate thickness gives
the modulil of elagticity

g Mg _7 [2(3 t1e (3>] 12£3>

£ J

12

B, =2 B, + -L E, = 173,500 kg/cm®

27 27
and for Ey
1 26 2
E =—=8 + =5, = 11,500 kg/cn'
v o7 1 o7 2 ) g/

that is, substantilally different values than for the plane stress.

Similarly, the transverse contraction factors in plane stresses are
different from those for bending stresses of the plate, ag will be

shown later.

The modulus of rigidity of the special—orthotropic plate, on the
other hand, has, for pure shear in the plane, the same magnitude as for

*
These values were altered by NACA Reviewer.
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the twisting stress of the plate due to twisting moments about the -x

or y axis, since the modulus of rigidity of each lamination is of the
gsame magnitude, regardless of whether the grain of the veneer is in

x direction or at right angles to it (fig. 11). Therefore, the gpecial—
orthotropic plate.is, as far as the modulus of rigidity is concerned,
homogeneous over the plate thickness. The modulus of rigidity of the
plywood plate should, in consequence, agree with that of the veneer, but
on account of the bonding of the laminations the modulus of rigidity of
the plywood plate compared to the individual veneer, increases according
to Hertel (reference T7), from about G = 7000kg/cm2 to G = 10000

to lEOOOkg/cma, depending upon the nature and quality of bonding.

After the four moduli of elasticity for plane or bending stress of
the special—orthotropic plate have been found — whether by calculation
from the moduli of elasticity of the veneer (cf. next chapter) or by
direct strain and bending tests on the plywood plate — the modull of
elasticity of the general—orthotropic plate for any angle o can be
obtained by the equations (6), so that the theory of the general—
orthotropic plate remains unrestrictedly applicable also to the plywood
plate. The extent to which the assumption of linear strain distribution
ig in agreement with actual conditions must be verified by comparison of
the calculation with the experimental results.

(b) Effect of Plywood Construction on the Moduli of Elasticity of the
Special—-Orthotropic Plywood Plate

Investigations concerning the effect of plywood construction on
the moduli of elagticity of the special—orthotropic plate have been
made by Hertel (reference T). Beyond the results of this work, it is
shown in the following that for the moduli a7, Qpns and 0 gimple

approximation formulas can be set up for their dependence on the plate
construction, and that the formulas derived for the plane stregs of the
plywood plate can also be applied to the plywood plate under bending stress.

(o) Plane stress of plywood plate.— On decomposing the plywood plate
into the portion on longitudinally and transversely directed veneers
(fig. 12), the strain equations for each veneer portion — the moduli, .
stresses, and distortions of the longitudinally directed plies being
indicated by superscript (1), those of the transversely directed by
superscript (2) — can be written as follows:

SCH I €S MY CO IR I CS

(7)
ey = o (Lg () 4 gy ()G (1)
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and

) ,_._Gx(.e). = 13 B, (2) + 05(2)5(2)
(48)
Ey(g) = alg(e)o' (2) + Qoo (2)0' (2)
.and'forlthe plywood piafe
€x = X10x + 00y
(49)

€y = W0y + Qppoy

The shearing strain is disregarded, since, according to the fore—
going, the modulus of rigidity G of the special—orthotropic plate is
independent of the construction of the plywood.

From equilibrium conditions at the plywood plate, with consideration
of the two veneer portions, follow

ox(l)Fl + cx(E)Fg = oyF

(50)
cy(l)Fl + Uy(Q)FQ = cyF
or, when putting %% =D
cx(l) + GX(E)D = 0x(1 + D)
(508)
L% (1 2)py =

(e 2o W W) Sl

=" SN
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On assuming uniform strain over the cross section of the plywood,
the condition '

(1) = ex(®) =ey
(51)

Gy(l) - €‘_)7(2) = ey

is applicable.

Observing that

a11 (1) = app(2)
“11(2) = “22(1)

and
“12(1) = “12(2)

equations (51) in conjunction with (50a), (47), and (48), the stresses

(2)
Oy and cy

(2)

can be represented with respect to the moduli of elasticity of the veneer

portion (1) and to the stresses o, and oy. The moduli of elagticity

aj; and ao follow then from the relation

€x = Ex(g) = d110x + 300y = OL22(1)5::(2) *+ o"l2(l)c’y(2)
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The moduli Qoo and likewise ajo can be defined in similar manner
from the equation ' :

éy - E73'(2) = opoy + %opOy = o‘12(1)%(2) + ail(l)dy(z)

The calculation gives for o

apq (1) “12(1)2 aq (1) “12(1)2,
+ D — DL — - (1 + D)
( tpp D) o1 My, (1) axt) o, 1P
all =(1,ll l)(l+D) 22
(1) (1) (1)
1+ s D ekl + D] - ale(l) (1 + D)2
“22(1) “22(1) L
(52)
and correspondingly for Aot
(1) (1)2
(1 + D) 11 212
app(t) o (12
arp = oo (1 + )
(1) (1) ' (1)\2
143 g .“11 +D -(fle ) (1 + D)°
aez(l) aee(l) app ™)
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According to Hertel's measurements on beech veneer, the moduli of
‘elasticity o have the following values:

kg

2
d~6 cm

(1) = 200 x 1
Qoo ke

(1)

2
—2.5 X 10‘_6 o

a2 ”

Since the transverse contraction modulus alz(l) is small compared
ADACI

app(1)

(1)

a
22
can be crossed out, thus leaving the simplified equations

to modulus agg(l), the terms with in equations (52) and (53)

2
all(l) o “12(1) NS OL11(1)
| ast) apy Py T\ app(@)
ayp = o + D) (522)
(1) (1)
1+ 11 D L +D
20\ ®
and
(1)
A 1.

ap = a5(1) (1 + D) (53a)

(1) (1)

Ao Qoo
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o . _ a12(1)2- _
Elimination of the term with ) ) in equation (52), leaves
' SO -7 )
1+ D) _
a1 = a3 (1) ( : (52b)
: a,ll(l) ’ .
1l + ) D
: 1
2o

The effect which the modulus of transverse contraction exerts on the
modulus of elasticity of the plywood is quite small and amounts to leas
than 0.5 percent, according to comparisons of the approximation formula (52b)
wilth the exact formula (52). The modulus of transverse contraction of
the plywood 1s defined by (53a) with approximately the same degree of

accuracy; with the use of (53a) and (52b), this modulus can also be
written as '

v =_°2=vll<1) 1+D (54)
11 apo(1)
l + —=——1D
(1)
b}
The corresponding approximate equations for the moduli oo
o
and Voo = = A= are
o2

5
5
E

(55)

(56)
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(B) Bending stress of the plywood plate.— The fact that the bent
plywood. plate has different moduli from the plane stressed plate can be
taken Iinto account in gimple mammer.

Agsuming linear strain distribution over the plate thickness, the
equations (47) to (49) apply also to the bending strain of the lamina-—
tions, 1f the elongation of the laminations 1s referred to that with or
across the grain, (fig. 13) (say, to the top boundary layer, for example).
The elongations of veneer portions in this boundary layer must be equal
to each other (equation 51). The equilibrium conditions for bending
follow from the consideration that the sum of the portions of the bending
moment which the veneers support mmst be equal to the total bending
moment applied at the plywood plate

ox(l)Wi + cx(E)WQ = oyW

(57)
Gy(l)Wl + oy-(2)w2

I
Q
)

where Wy represents the portions with the grain and W, those across
the grain to the section modulus per unit length (fig. 13)

s/2
24F
f T “(with the grain)

2
Wy = —S/
s/2
8/2
f n°aF th
. —s/2 (across the grain)
> =

s/2

and W 1is corresponding to the homogeneous material

w:ﬁ
6
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. : W,
If, as for the plane stress, the factor D = ﬁg is introduced,

' . . 1 .
equation (57) takes the same form as equation (50a) and all the relations

“derived for the plane stress apply to the bent plate, too; however, it

should be borne in mind that in bending for one and the same plywood

- plate, a different factor D is used for determining the moduli of

elasticity from that for plane stress. To 1llustrate: For a plywood
plate built up of three identical veneers in plane stress, Dy = 0.5, as

against Dp = 0.0385 1in bending; for a plywood plate of five identical
plies, Dy = 0.667, as against Dy = 0.263 (Table 1).

Figure 14 represents the moduli of elasticity E115> E,ys and the
transverse contraction factors Viis Voo plotted against the factor D

which characterizes the construction of the plywocd. By this D any
dealred congtruction of plywood, hence algo plywood congisting of plies

of different thicknesses, can be defined. The D factors for plywood

of various construction, but identical ply thicknesses (3, 5, 7, 11, = plies)
under plane and flexural stress are shown on the abscissa. The calcula-—
tion for determining the moduli of the plywood was based on Hertel's test
data for beech veneers. According to it, the following averages hold

for the veneer:

Eyy = 180,000kg/cm?
Eop = 5,000kg/om2
Vll = 0.14-5
V22 =. 0.0125
- 700C 2
G = TO0Okg/cm

The results of the calculation are included in Table 1. The com—
parison of the modull obtained by approximation with those obtained by
the exact equations discloses only mlnor differences. Table 1 and
figure 14 also contain the moduli of elasticity for o = 45°, the
‘determination of which is given elsewhere.
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(c) Effect of Angle  on the Moduli of Elasticity

Wood veneer and — according to_the arguments of the preceding
section — plywood as well may be regarded as examples for anisotropic
(orthotropic) material. Knowing the moduli of elasticity along the
principal axes, the application of equation (6) permits the representation
of the change in the moduli with the variation of angle w.

(o) Veneer.— Regarding the moduli of elasticity in the principal
axes directions of beech veneers, Hertells test data are available.
Figure 15 shows the moduli of elasticity o for the veneer with these
principal axes values plotted against the angle w.

It is seen that modulus all','age', alg', and a,,!' have a period
of 90°, while modulus aj3' and agy' repeat only after 180°. The

values of a13' and a23' disappear for O° and 90° (that is, for ]
special—orthotropic plates) and agree for w = 45° and 135°, respectively.

The marked anisotropy of beech veneer is particularly apparent on
moduli ayy' and a22', which manifest very great-variations with the
change of w. '

The modull ajy', oq5', and a33' are shown again in figure 16,  but

&

12

o8
11"
The modulus of rigldity decreases within narrow limits and assumes the

in the reciprocal manner of writing Eq;' = and V' =

minimm value of G = 4750535 at o = k5%, Of interest is the modulus

of trangverse contraction 'Vll" which is positive in the range of the

principal axes directions, and negative in the range of w = 11.5°

to 78.50, that 1s, a veneer strip whose angle « 1lies in this range
becomes wider under tensile stress, a phenomenon experimentally observed
by Hertel at w = 45°. Besides the measurements of modulus E;; and

Vll at o = 09, Hertel also made some measurements of the modulus

at o = 45°, which showed E1' = ll,OOOE——- and V! = -0.185. These

2

cm

values indicate good agreement with the computed values of E; ' = 11,700555
cm

and v' = —0.17.
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(B) Plywood.— With Hertel®s modull of elasticity for the gingle
veneer as basis, the calculation gives, according to the arguments of
Section II, 5b, the moduli of the principal axes of the plywood repro—
duced in table 1, a distinction being necessary between the moduli for
bending and plane stress. The modulus of rigidity of the plywoocd 1s

increased to 10,500555 as a result of the bonding of the laminatlons,
cm _

ag against 7,00035— for the nonglued veneer,

cm2

Figures 17 and 18 represent the modulus a' for plywood of various
congtruction plotted against angle w, and figures 19 and 20 the corre—
sponding reciprocal values for plywood plates stressed 1n plane and in
bending.

The equalization of modulus of elasticity E;; and Eop at w =0

and 90° as a result of the cross laminations compared to the simple

veneer is readily apparent; the modull approach each other with increasing
number of plies. A balance of the moduli of elagticity in the range

of 45° angle with the E modull for 0° and 90° 1s, however, uncbtainable

on laminations placed at right angles to each other (orthotropic plywood),
the E modulus drops at w = h5° to about 25 to 30 percent of the

values Ell at o = 09, depending upon the number of plies. An equali—

zation of this range could be obtained also by a plywood which contained
diagonal laminations in addition to those at right angles to each other.
But such plywood has found no practical application up to now.

The modulus of rigidity G for orthotropic plywood shows the typical

rise from 10,5005~ at o = 0° and 90° to about 40,000°8— at o = 45°.
cm? cm®

The great gain in shearing strength afforded from the use of plywood

plates having their grain dlagonal for shear trussesg over normally bullt—

up plates is readily apparent.

The diagrams indicate further that the modulus Ell' for plane

gtress varies within comparatively narrow limits with the change in
number of plies; in the range of o = 45° particularly, the variation
of the Ej ;' modulus is scarcely noticeable.

The customary method in practice, independent of the construction

of the plywood, to figure with a modulus of elasticity of 100,00 K, 5
cm

longitudinal direction (w = 0), of 300,000555 (w = 45°) in diagonal
cn’ :

in
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direction and of 70,000555 in transverse direction (w = 90°) appears
© cm

to be Justified to some extent according to the values of figure 19.

On the other hand, the modull of elasticity Ell in bending for

®w =0 and 90° are scattered over a wide range; especially the values
for three—ply plywood differ considerably from the others. It therefore
seeme no longer permissible to Introduce fixed values for the moduli of
elagticity independent of the construction of the plywood, when plywood
plates stressed 1n bending are involved.

Even the values of G' in plane stressed plywood are not essentially

dependent on the number of plies, so that here also the value of 40,00
cm

used in practice independent of the construction seems Justifiable.

But the modulus of rigidity in flexurally stressed plywood plates
ig, for o = 45°, very much dependent on the construction of the rlate.
An interesting particular case is represented by the three—ply plywood
which, independent of the angle , has a constant modulus of rigidity

of G!' = 10,50058~.
Cm2

The dependence of the moduli G', Ejq! = Epot, V' = Voo for

diagonally oriented plywood plates (w = 45°) on the construction factor D
is also apparent in figure 14, which shows the minor change of the
moduli, especially of modulus X' in plane gtressed plates.

IIT. THEORY OF BUCKLING OF THE

GENERAL-ORTHOTROPIC PLATE

A, EXACT SOLUTION OF THE PROBLEM
1. The Stability Condition

If an infinitely long, general-orthotropic, homogeneous and elastic
plate gtrip 1s stresgssed at its edges by uniformly distributed axial
forces Ny and Ny, or shearing forces Nky" respectively, (fig. 21),
these forcesg produce components at buckling w of the plate, which are
at right angles to the plate and of magnitude (reference 6, p. 305):

_Pszaz_W+ QNU&-}‘Ny.@E‘i (59)

a2 3xy 3y°
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If this loading of the plate by the external forces.(through corre—
sponding increase of the forces) reaches exactly the value p, which
corresponds to the value p as a result of the internal resistance

. againat bending according to equation (30), the plate becomes unstable,

that is, it collapses into corrugations. or wrinkIes.

For this extreme case of stability, the differential equation of the
elagtlc surface becomes, according to equation (30):

b b o " _ ot 4
Dyt X 4Dy 4! ¢ O, + 2Dyt — s 4D, " LA Dpp! -a—Z
anct ax3oy =y 3 axoy3 oy
2 2 .
+Nx%+2nyaW+Ny§-1=o (60)
ax Sy Sy

The characteristic values of this differential equation give the
desired critical loads at which the plate begins to become unstable,
the characteristlic functions w corresponding to these characteristic
values, the buckling forms of the plate.

2. FPormula for Solving the Differential Equation

. For the infinitely long strip, the solutlon w of the differential
equation in x -‘direction must be a pure periodic function, in which
cage 1t 1s then posslible algo to apply to the extended differential
equation of the general—orthotropic plate the Southwell-Skan formula
(reference 4) for the i1sotropic plate:

mﬁ. 1»;5 ('70)

w =28 (<]

where Kk 1is a real quantity.

- The formula (70), introduced in the differential equation, gives the
characteristic equation

2 2
4D, 2D, 4! N._a L ! 2N, _a
lu + 23 Hk3 + 33 £S — y k2 + Dl3 n3 - -—EZT- K jA
D22' D22' D22 D22' 322

KW =0 (171)
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The characteristic equation glves four roots hn, so that for
given k the .complete integral of the differential equation reads:

x z y y y
iKa ikla 1x2a ix3a irg
w=e Cle + Cze + C3e + Cue (70a)

With the roots A, the characteristic equation can also be written as
(A =2) (=2 (v = A3) (M =) =0
or resolved
b33 2
A —xul+@+x3+m)+xuﬁ2+hh+xﬁ4+@%+xgu+%m)

A comparison of the coefficients of the term with k3 of
equation (71) and (72) glves:

4D, !

Mot A+ Azt Ny = - K (73)
Dot

The roots A can, therefore, b& expressed by

D,." )
Mp=ak3— -k
Dop E'
(74)
D 1
k3’4 =—a 7 — 23 K
D |
oo
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According to the principles governing the roots of eQuations with
real coefficients, o must always be real and f and 7 either real

or purely imaginary.

Further comparison of the-other coefficients in equations (71) and
(72) and introduction of formula (74) gives in place of the character—
istlc equation the relations: '

: 2
N _a
202 — 52 - 72 = 2312n2 4
| Doo
2 2
N,a< Dyy!' N_a
2 ' T
Dop' Do’ P22 '
2 2
N..82{Dnry! N2 Doa'  N.a?
(a2 — B2) (a2 — 72y = BSAKM I P 23' + 0 X 23 _ X 2
Doo' \D22 Das' D' Doy'
22 22 o0 22

The quantities By, By, and B3 represent expressions of sumg of
the stiffness quantities of the plate:

Doo? 2 Daa!
2p2 = 6 (223~ +2£'
Dopt Dop

2 t
Doq ! Doat D D, .t
2323 = _}_,_ (_23T> + 2 23' 33' -2 l‘.}l (76)
Doo Doo' Dpp Doy
u 1\2 '
Dot D Dyt D' D!
Bt =3[ 3.} +of 23 ) 33 _, 23" 73  Pu

[ ] | ]
o 22 Doo' Dpn” Doy
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3. The Boundary Conditions and Buckling Equations

As boundary condition for the plate strlp, the two extreme cases of
the clamped and freely supported edges are investigated.

In both cases, there is no displacement normal to the plate at the
edges. For clamped support, the angle of inclination ow/dy of the

plate disappears at the edges, while, when freely supported, the fixed
end moment My must disappear. The boundary conditions for fixed end

support therefore read

w=0 for y=+t%a
(1)

QE =0 for y =4+a
oy

and for free support

w=0 for y=4&a

My

(I1)

It
(@)

for y = ta

The four boundary conditions (I) and (II) give four linear homogeneous
equations each, for the determination of the constants C, 1in equa—
tion (70a) Which, depending upon the boundary conditions, take different

forms:

(a) for rigidly restrained support:

iz ir, iA ix4
for w=0,y = a: Cle + Cee + C3e + 04e =0
—iNy =ik —ihy iy
for w=0,y = -a: Cle + Cee + C3e + Cue =0
M _ o = .cxikl ng%cxm?’ cxn—
for Folals y =a: Cime + Cohpe 373® Rl T =0
Ou ! ~irg —i -
for = = . C —iA
' g)‘; O, ¥ —a: Clxle + C2X2e + 03)\.33 3 + CL,_A'L‘_G -0
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Introducing the relation
S
o M = Gog A £ 1 sin Ay

and equating the real and 1m$ginary“pér£s of (i{i)) to zero results in

‘0

Cicos Ay + Cpcos Ap + Czcos Ag + Cycos Ay

1
(@]

Cisin Ay + Cpsin Ay + Cgsin A3 + Cusin Ay =
(x(2))

I
o

CiAjc08 Ay + CpMpcos Ay + C3Agcos Ay + Cyhycos Ay

|
(@)

Clklsin xl + Cexgsin XE + C3x3sin x3 + Cuxhsin xu =

t These equatlons have solutions different from zero only when the
determinant of the coefficients disappears. The determinant put equal
to zero gives a trangcendental equation with the roots xn, the buckling
equation.

This buckling equation reads therefore

cos kl cos Xg cos k3 cos X4
sin A sin xg sin x3 -sin X4
=0 I

A1 cos A ke cos Xe X3 cos X3 Ay cos A (1(3))

Xl sin Xl X2 sin X2 X3 sin 13 Xu sin Ay

The solution of the determinant gives
(1 = 29 (o = M)sin(q = A)sin(hg — Ay)

(v = 2) (03 = Apsin(yg — Ag)sin(hy — Ay -0 (T(4))
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Insertion of the expressions (74) for A, gives, after some
rearrangements, the buckling equation for fixed end support in the form’

2By(cos 2B cos 2y — cos 4a) — (ha? — g2 — 72)sin 2B sin 2y = 0 (Ta)

B. Free support

The first two equations for C, (from w = -0, y = *a) agree
with those applicable to fixed end support.

The third and fourth equations follow from the relation (cf. equa—
tion 28).

32y 3w 3w
= Dyt —5 + Dop' == + 2D55' =— =0 for y = za (I1(1))
My = Dip 5x2 3v2 23 axy
The first term disappears, because ég% = - 523 =0 for y £ a.
ox a

With the relations from equation (70a)

. X L A

1K= 2 LA —
gal = —e a E Cn .)"_I_l_ e a
6}’2 n= a,2

and
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the equations II(1) give for y = *a the two equations for the
constants Cp ‘ .

y

> CneilnE)ee'lr‘;é* 2D23""n"] =0 -

n=1

(11(2))

n=1

)_‘_ .
> e Pn 2, -
- Cp® E’za"”n + 2De3'7~n€l =0

Again introducing equation (77) in (IT(2)) and putting the real and
imsginary parts of the equation equal to zero gives the third and
fourth equation for Cp 1in the form

*

L
= Cyoos )‘nE)22'7"n2 + 2D23'>"nﬂ
n=1

* ) (11(3))

:EE::: Cnsin An Deg'kng + 2D23'an]

n=1

fl
(@)

il
o

Putting for simplification, Dgg'xng + 2D23'Xnn = D, the four linear,

homogeneous equations for C, 1in the case of free support read

Cicos A3 + Cpocos Ay + C3cos k3 + Cycos Ay =0
Clsin'kl + Cosin Ay + C3sin k3 + Cysin Ay =0
(IT(%))
C1Djtos Ap + CoDpcos Ap + C3D3COS X3 + CL,_D).#COS l)_‘_ =0
=0

ClDlsin Xl + CgDesin x2 + C3D3sin k3 + CuDgsin Ay =

*The sumation sigﬁ was omitted in these two equations in the
original version of this paper.
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The determinant of the coefficients of thié equétion gystem put
~ equal to zero gives again the buckling equation for the case of free
support. -Development of the .determinant results in .

(Dp — D3)(Dp — Dy)sin(ry — Ap)sin(rz — Ay)

o

—(Dp — Do) (D3 — Dy)sin(ry — Ag)sin(hp — 1) = 0 (II(5))

By (74) the buckling equation for the freely supported plate follows
after varlous rearrangements 1n the form

8a?B7 cos 2B cos 2y — cos 4@]

5
— [;az(se + y2) — (g2 — 72):]sin 2B sin 2y = 0 (IIa)

It is interesting to note that rigidity value D23'/D22' charac—

teristical of the general-—orthotropic plate cancels out durlng the
rearrangements, thus leaving for the general—orthotropic plate the same
buckling equations from the boundary conditions, as obtained by
Southwell—-Skan for the isotropic plate.

4., Solutlon for Pure Axial Compression

For the case of pure axial compression, the equations (75) take the
form

—2q2 — B2 - 72

it

28, 22

a(p® - 72) = 2Bp3k3 (752)
(o = 62)(a® - 72) = B —

Nxag/Dge being abbreviated to mny.
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The three equations (75a) in conjJunction with the buckling equa— -
tion (Ia) and (IIa) permit the four unknowns, @, B, 7, and ny, to be
defined for any, for the present assumed, fixed value of k. The minimum
value of the values of ny with respect to k gives the desired

buckling load of the plate. The stiffness characteristics of the general-—
orthotropic plate enter through the congtants By, Bo, and B3, which,

in turn, are related to the quantities Dll » D22 B D33', Dl3 » and D23
in the qualifying equations (75a).

From the first two equations 6f (75a), B and 7 are found as

3
B2 = 8.2 + B3 & — o2
(78)
2 _ _p22 3_ 2
Y '._Bl K —323 %—CL
and from the third equation follows
2 2 2
- _ Nya y 2 _ (aP — p2)(a® — 72)
= X = —
nx —D ; —B3 K > (79)
20 K

In the following B 18 always agssumed real, while 7y can become
real as well as imaginary (reference 1, p. 280).

From the transcendental equations (Ia) and (IIa), which for
imaginary 7 can be written in the form

2B -Z—Eos 28 cosh 2-1— — cos ha.:l - Ea? - g2 - 72J gin 28 sinh 2% =0 (Ib)
and
8a2B% cos 2B cosh 2%-— cos hé] -

[hae(ﬁz +72) — (B2 - 72)2]s1n 2B sinh 2L = 0 (I1b)

the value o for constant x can be obtained from equation (78) and
with it the quantity ny from equation (79). By repeating the
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calculation for other values of x, ny can be represented as function
of k, the lowest value of which is the looked—for buckling load 'n,.

—_— : D
For the case of the speclal—orthotropic plate [?2 = 0, B12 = 531,
o ' 22
see equation (76)] a closed solutlon can be given for the buckling load
of the freely supported plate. For the gpeclal—orthotropic plate, the
equations (75a) assume the form

D
—2a2 — 82 — 72 = 2812n2 =233 n2

Doo
(B2 —72) = 0 (75b)
D
(a2 — 82) (o = 92) = By*ed —ne? = 2 * _p o
Dop

From the second equation of (75b) follows a = 0. The buckling
equation reads then:

(g2 + 72)° sin 28 sinh 2% =0 (80)
Since ginh 2 % > 0, the last equation gives
sin 28 = 0 and P = %

From it, the first equation at (75a) Follows as

D 2
72=—2172-3.R2_“_
22 4
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and hence from (79)

2 2 2D 2
L _Mge? D2 pH2 Dkt 4% [ T3¢ x°
X
’ Dop  Dgp K2 Dpop  uk° Dop b
2 81
Nf'_ﬂ£g+£ﬂe?3+ﬁl- (8
D, Do 2 bo 16 K2

The value K at which the minimum value of Ni appears follows

ONy,
y
K=1VE@ 4 (82)
2 Y D1y

from —= =0 as
ok

and, after introducing (82) in (81), the conventional buckling load

formula (reference 6, p. 382).

2
14
N = e——— D 4 D
x =3 ‘/Dll o 33)

and (83)

2
_Na _ 2[ D1y + Da3

By = )

X

The result indicates that the buckling load for pure compression of
a special—orthotropic plate for w = 0 and for w = 90° 1s of the same
magnitude, while the buckling lengths for w =0 and ‘@ = 90° are of
different magnitude.
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The buckling load of the special—orthotropic plate for the case of
clamped edgesl cannot be given in closed form, but the solution can be
represented in simple form as function of the "characteristic value" of

vD11Dop

D33

than in the general-orthotroplc case, because a = 0.

the orthotroplc plate 3 = and. determined in siﬁpler manner

The equations (78) hold for this case also, but the buckling
equation takes the form

2B%<; — cos 2B cosh 2%) = (B° + 72) sin 2B simh 2%

(8k)
Rearrangement results in the transcendental equation
Btan B = - Z tanh 2 (85)
i i
from equation (79) follows agailn
o .
Nya™  Dj3 n2 2 B2
b D TV 2
Dyp 22 K
and from (75a)
o) 72+B2
K T e—
o D33
Doo
hence the buckling load
D--D 2p2
11+22 7<B
Nxag = ——————-(72 + B2) + 2D33 _— . . (86)
2Dop 72 + p

17he investigation of the special—orthotropic plate with clamped

edges does not appear in the literature and ig therefore appended for
the sake of completeness.
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or
na® | D 7% B2 2% (86a)
D3z DyP 2 .2, go :

The value Nka2/D33 for every fixed parameter DllD22/D332 can be

repregented as function of the value 7 regearded as independent varlable
( and B are comnected through (85)).:

The minimum of this function represents the looked—for buckling
load. The result of this calculation is included in table 2 and plotted
against the "plate value" '

VP11D2p _ 4
P33

in figure 22. The closed solution for the case of the supported plate
18 included in the corresponding form in this diagram.

In Section IIIB the case of the clamped plate which permits no
closed formal representation of the result is indicated by an approxima-—
tion formula in the form

o2 .

which 1s also included in figure 22 for comparison with the exact values.
The accuracy of this formula can be substantially enhanced by writing
(as seen from figure 22)

2
N, = i_’;.é_ (|/3D11D22 + 0.88D33> (87a)

The differences throughout the explored range d = 0.2 to 5 K are
very small, except 1n the range 4 = O to 0.2 where they become greater
and at 9 = 0 agsume a maximum of about 12 percent. At d = 0.2 the
error is only 12 percent; at 9§ = 5, about 1.8 percent. The values
between these two characteristic values have an even smaller difference.
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The case of the isotropic plate is contalned in the special-
orthotropic plate for the characteristic § =1 and gives for the
supported plate : .

and for the cleamped plate

_ 17.20D

5. Solution for Pure Shear

In the case of pure shear, the equations (75) read
202 — p? — 92 = 28,24

a(p® — 7°)

2B,7K3 + ny ke (75¢)

(a® - p2)(a® = 72) = B34n“ + eny Ax®

D23'

a’
when writing for abbreviation, HEI—— = nxy end A =
Dop?

Dop

As in the cage of pure compression, the unknown a, B, and 7 can
be determined from the three equations and the buckling equation (I)
and (II), when an arbitrary value is agsumed for k . After determining
geveral Kk values, the minimum of the function Nyy = f(r) gives the

desired buckling load of the general—orthotropic plate. From
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equations (75) follow after considerable calculations the quantities B
and 7y

o o _ -
B2 = —B1%%2 — o«© — 2Aax + VﬁAenza? + (;ABQ3 —-B3¥>n# + C?lena + 2ag>

- 2
72 = —Blene - o + 28K — VLAQKQQ? + (@AB23 - B3F)nh + Cglene + 2ag>

(88)

and, in addition

By = g_yf_ = & (g2 — 92) - 28,33 (89)

From the buckling equations (I) and (II), the value a and hence nyy

1s obtained agaln for chosen values of Kk with the ald of the equations.
The minimum value of Dyy with respect to Xk represents the buckling

load.,

For the case of the speclal—orthotropic plate the equations (75b)
simplify to

D
—20° — 52 - 72 = 2 522 K2
22
a(p® - 72) = Nyyk (754)

D
(2 — B2 ~#2) = L«
22

D D
because B12 = 5333 323 = 0, 334 = —lly and A = 0.
22 Doo,

The buckling equations are also applicable to this case without
change. Seydel (reference 3) determined the buckling loads for this
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case in a very thorough study by means of equations (75d) and plotted
the result against the plate characteristic.

For the case of the isotropic plate with the still further simplified
equations,

202 — B2 — 72 = 25®
a(B? = 72) = nyx (75e)
(a2 ~ p2)(a® - 72) = g

the solution by Southwell and Skan (reference 4), was obtained with

Ny 82
n, = —=3 _ = 13.16 for the supported plate and n,, = 22.70 for the

Xy D Xy
clamped plate.

B. THE APPROXIMATE SOLUTION OF THE PRCBLEM

An increase in the number of elastic constants on the general-
orthotropic plate compared to the general-orthotropic plate (in pure
compression the number of elastlc constants lncreases from two to three
and in pure shear from two to four (see equations (75a) and (75b)

r (75c) and (75d)) renders the determination of the buckling loads and
buckling lengths by means of the previously discussed exact method
extremsly time—consuming, since in view of the greater combination
possibilities of the elastic constants a much greater number of buckling
load determinations must be carried out.

1l. Method of Solution

The approximate golution can be obtained by the energy method. On
transition of the plate from the plane to the buckled equilibrium
position, hence, on reaching the critical buckling load, the energy
stored in the plate by the bending strain is exactly equal to the work
performed by the external forces:

Ay —A, =0 (90)

The internal bending energy owiMg to the deformation w of the
plate is indicated by the equations (36); the energy of the external
forceg during the buckling process may be expressed 1n the following

=__fj E(aw> + 2y (2 X% v Ny<?> ax dy (91)
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Equation 10 becomes then

ff (aaw> o1 B ( P S

1 a2 dy2 3’ e axay
L, Pw B 2w o
st ey (3‘5; m”‘ff.“x%z

o v 3w ¥ |
+ Ny = 5 + Ny<s}->:}dx ay (92)

The condition for stable equilibrium of the plate that the energy
change during the buckling process shall be a minimum, hence

8a — 5(a; — Ay)

can be satisfied by variation of the displacement w of the plate in
equation (12). This variation process yields the differential equation
(cf. ITI, A, 1) for the elastic surface of the buckled plate and the
characteristic values of this differential equation give the exact
buckling load. But if the buckling load is to be determined only approxi—
mately, an approximation formula for the buckling form can be introduced
in equation (12), which differs from the actual form of the buckling
surface. In this case, a formula is chosen which contains two free values
which, by application of the condition of minimum energy change during

the buckling process, can be so determined that the presumed buckling
form is as close as possible to the actual form.

A gimple formula 1s applied in the form

= A cos %? sin % (x — €y) (93)

for the freely supported longltudinal edges of the plate, and
A eny T o(y —
L (l A cos — >sin T (x . €y) | (94)

for the fixed end support-of the longitudinal edges.
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This function, originally given by Timoshenko (reference 6, p. 365),
represents infinitely long buckled surfaces with the half-wave length L.
(fig., 24), whose straight nodal lines running diagonally to the longi-
tudinal axis x form with the y axis the angle ¢, the tangent of
which is equal to ¢; L and € are the free values.

Formﬁla (93) satisfies only the geometric boundary condition w = O;
while the boundary condition My = 0 (see equation II(1)) is not

satisfied, because neither Bew/ay2 nor O2w/dxdy disappear at the
boundaries y = *a, ag a rule.

On the other hand, formula (94) satisfies both w = 0 and o - 0,

. oy
but the two formulasg still do not satisfy the differential equation of
the problem.

The nodal lines of the actual buckling surfaces are, in general, not
straight lines. But, as even comparatively rough assumptions for the
buckling form yleld satisfactory approximate soclutions for the buckling
load, the simple formulas (93) and (9%) should afford sufficiently exact
buckling loads.

As in the exact solution of the differential equation, so the buckling
load of an infinitely long orthotropic plate strip freely supported, or

clamped, respectively, will be investligated for pure axlal compression
and pure shear.

2. Approximate Solution for Pure Axial Compression

(a) Free Support

Performing the integrations indicated in the equation (92) by means
of formula (93), the buckling load for the case of pure axlal compression
follows from (92) as

- - t D LI t L= L_ —_ t E_
Ny = 55Dy 5 + 2Dgq <L2 €= + 1)+ Dot 6e° + 2 € + 2 4D 3 €7

. |
- 41)23'(105 3+ 3e> (95)
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The two free values 1 and o are obtained from the minimum con—

ditions %% =0 and %ﬁ 0, or, what amounts to the same thing, from
the conditions éE& =0 and —EE = 0, o - :
oL A€ _ 3
o)
From -EE = 0 follows
oL
)_‘, D 1 . D | ] ] D t
'EH ek g _§§T €3+ 2 —337 ¢ — 4 213‘ € + ll, (96)
b D,p Dop pore) Do
ONy
from —= =0 follows
d€
2 Doot D D D
L 3-3.23 2 _D233 . _Da3’ 23 =0 (97)
L Dot Dpo'  Dpp'

| Although one unknown L/b can be eliminated from the equations (96)
and (97), no closed expression for ¢ with respect to the stiffness
quantities can be glven, on account of the ensulng equation of the sixth
degree for ¢€; the values ¢ and L/b from equations (96) and (97)
must therefore be obtalned by a graphical method.

The 1ntroduction of Ll‘/‘blL in N, simplifies the expression for Ny
in

2 2 Doa! Doy’
70 L 2 33 23
N, = 2= Do {=— + 3¢° + -6 € (98)
* 22 b Dop! Doo!

For the special—orthotropic plate, formulas (96), (97), and (98)
glve the conventional closed relation for the buckling load of an
orthotropic plate. The terms with Dl3' and. D23' disappear in

equation (97), hence ¢ = 0 and equation (96) therefore gives

_ll-Dll
Dop

o' |

(99)
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For DNy, after insertion of (99)

N, = 2& <|D11D22 + D33|) (100)

This relation applies exact, since for ¢ = 0, and D13 = D23 = 0,
the formula w = A cos %? sin ?? satisfies the differential equatlion of

the special—orthotropic plate (equation 32).

A gimple releation holds further for the particular case of an
orthotropic plate of equal principal stiffnesses Dll' Doot, the
directions of the fibers of which run at 0° and 45% to the edges, since
in these cases the terms with Dy3' and D23 algo disappear (cf.

equation (23a)) and € = 0. The stiffnesses Dyt = D22' and D33'

refer then, of course, to the momentary direction of the axes.
The buckling load is then
2
2n
N = = (022" + D33") (101)

and the half-wave length ¢ = 1.

This simple relation does not hold, however, when arranging an
orthotropic plate of equal principal stiffnesses under arbitrary direc—

tion of fibers because then € does not disappear.

Lagtly, for the isotropic plate, it gives

D11f = Dpp' = D33* =D

and
13l D23l = O
and hence
4@
NX = —é-—D
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(b) Clamped Support

The determination of the corresponding buckling loads of the plate

‘with. clamped edges in axial compression by formula (94) glves

22 2 B2 2 2 '
Db 2 2 %) <?> 3 >
D ._._.)4. _€+2D — T + =)= 4D — €° + Le
b2 11 12 D13 1.2 33 (Le 3 23 12

+ Dggl(f_e_ e”" + 852 + % L_2> (102)
b .

ON. ON.
The minimum conditions Sfx =0 and S—L- glve the two equations
€
for defining the free values ¢ and L/b:

D T D 1 D 1 D 1
"36‘1‘1: Hoy 23 3,33 2_ 13 ., (103)
b Doyt Dop! Dpo! Dpo'!
2 Dp3’ D D D3’
.i 25 3 - 3 3 2 4+ 33 € — 13 S S B €l=0 (104)
L Doy Dop Doy Dop

On introducing Lh/bu into the equation for Ny, the gimplified
expreasion

N, = %--— Doo' | 4 5 + 362 -6 ¢ (105)

1s obtained.
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For the case of the special—orthotropic plate, equation (103) gives

4 D LiD 4fp
A Dll T o R it (106)
oo 2 Doo Dpo

The buckling load follows from (105) as

. | |
o (/P2 * P53 (107)

while the expression applies exact for the buckling load of the supported
orthotropic plate, the expression (107) for the buckling load of the
clamped plate is only approximately valid, because the formula (97) for

€ = 0 does not satisfy the differential equation.

The relation for the buckling load in the particular case of equal
principal stiffnesses (w = 0° and U45°) of the clemped plates reads

Ny = % £§ (V- 11 + D )

and the half-wave length

o'
I}
=

/3 = 0.658 (108)

The approximate expréssion for the lsotroplc restralned plate 1is

2 . 2 2
N = 8(1 + ¥3) x2  _8x2.731 42 7.28 I_ p
3 32 3 p° b2

The exact solution is (reference 6, p. 345)



!
i
P
{

\

i

R A

L"Io‘
n

NACA TM 1263 : 65

3. Approximate Solution for Pure Shear

(a) Free Support

Ag for the pure compression the integrations together with
formula (93) give the buckling load

a2 2 2 - 5 .2 L .2
1 b p i b 2 b L ;
N = '+ 2D, 2= €5 + 1)+ Dont (b + e+ —
2 2
- t ¢ b _ ef B2 3
4D13 € 7 4D23 7 €~ + 3e (109)

The expression for the buckling load in shear therefore agrees, up
to the factor 1/2€¢, with the relation for the buckling load in com—
pression. Consequently, the equation BNiy/BLe for determining I and ¢

must be identical with the corresponding equation (96).

The second qualifying equation BNky/Be gives the relation

2 Ds,! D4t D, ! D 2
sb_gles’ 3, .08 2 11>+662“2 33° 12

I

€ - - =0 (110)
] . 1
o' Dos Dop' Do’ 2

Introducing equation (96)-in (109) again gives the simplified
expression for Nky

1 t

2 o f12 o P33 Do
]

€b b Do D,,"

€ (111)

For the isotropic plate, Dpp = D33 = D; D23 = 0; hence the expression

A

N 2 p(3¢° L2 1) (.)
= —= D(3¢" + = + 112
v eb2 b2
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This equation 1g identical with Timoshenko'’s result (reference 6, p. 361)

1
e=§,/§=o.7o6

and

hence by (112)

Ney = I-p=5,662D
o2y S
The exact solution is
ﬂe
ny—5‘35_2D’
b

the error of the approximate solution amounts to about 6 percent.

(b) Clamped Support

The corresponding calculation for the clamped plate gives the
qualifying equations for € and L; in this instance, equation (103) is
applicable as in pure axial compression and also the equation )

2 D 1 D [ D 1 D H 2
EE 364 -8 23' 63 + 2 —éiT 62 —-4L£i> + 862 -8 —§§T - Eé%— =0 (112)
L Dop Dao Doy! 3Dps'  3p

11
— bt oo (113)
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For the isotropic pla%e, equation (103) and (112) glve € = 0.760

and % = 0.826 and hence by (113)
2
N, = 9.60 &2
b2
Since the exact solution glves
2
N, = 8.98 22
be

the error of the approximate solution amounts to 6.7 percent.

C. BUCKLING LOAD OF THE ORTHOTROPIC PLATE UNDER COMPRESSION AND

SHEAR LOADING FOR THE PARTICULAR CASE o = 45°

In order to minimize the paper work required for the determination
of the buckling loads of the general—orthotropic plate, the results for
geveral important gpeciflic cases are reproduced.

Of particular interest in practical application is the case of the
general—orthotropic plate where the directions of the principal axes of
the plate are inclined at a 45° angle relative to the plate edges. For
the calculation and especially for the representation of the results,
this case ylelds simplifications, since at w = 45° the relations
D11' = Dyp' are applicable (see equation (23a)). The results can then

be represented in general form as function of the stiffness ratios D23'/D22'

and D33'/D22', since, owing to egquation (23a), only these two values
appear in the qualifying equations ((75) and (76)). These quantities

are determined in the subsequent section (IIID) for the speclal stiffness
combinations of plywood of varying construction over the entire range of
angles w(w = 0 to 180°) in order to demonstrate the characteristic
relationship between buckling loads, buckling lengths, and angle w.

1. Regults for Pure Compression
The bﬁckling loads ny, of the infinitely long general—orthotropic

plate strip freely supported at the longitudinal edges and stressed in
pure compression are shown plotted against the parameters D23'/D22' and
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D33'/D22' in figuré 25 for the specific case w = 45°. The values were

obtained by the approximation method described in section ITIB. The
approximation is made by the graphical determination of the values L/b
and € from equations (96) and (97) and their subsequent insertion in
equation (98). _

For purposes of comparison with the results obtained by the exact
calculation a few of the n, values obtained by the latter method have

been included in figure 25.

The method of determining the exact buckling loads is as follows:
first, the constants Bl’ B2, and B3 for a gpecific palir of values

D23'/D22', D33'/D22' are determined by equation (76). After these con—

stants are introduced in equation (76a), the buckling load ny for a
number of specifilcally assumed values of K can be obtained with the aid
of equation (78) and the buckling equation (ITb) from equation (79).
The characteristic behavior of the function n, = f(k) 1s shown in
Doyt 1
figure 23 <%or the pair D23' = 0.5, 2337 = %>. The minimum of this
22 Dop

function represents the looked—for buckling load.

A number of further exact results are obtainable from the qualifying
equations (75a), without making the previously described calculation, for’
various particular combinations of D23'/D22' and D33'/D22':

(a) When the stiffness ratio D23'/D22' takes the value zero, that

is, when the plate has the same modulus of elagticity (Ell = E22) along

both principal exes, the qualifying equations (75a) can be written in
the form

Dot
20? — g2 -2 =2 3342
Dop!
a(g? = 72) =0 (75b)
D |
(a® - B2)(a® = 92) = S ngk” =kt — ngr®
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The equations agree with the equations (75b) for the special
orthotroptc plate, except that instead of the stiffness ratios D33/D22

~and . Dll/D22‘ referred to the principal axes directions, the ratios

o
D33"/Dppt and Dy '/Dpp' eppear for o = U5°. At @ = 459, Dyy '/Dpp!
has the value unity.

F

The results obtained for the special—orthotropic plate apply also

Do3? o D33
when - = 0, to the cage - = 45°, The plate value ——==— becomes
oo - 11020

then the expression D33'/D22'. The buckling loads represented in
Dnro? )
figure 25 for —237 = 0 by a strailght line are therefore exact values.
D
22

(b) A number of other exact values may be found in simple manner
for the particular case

2

Doot D__!? D, !
By3 = —23_ |- 31 4 33' —1l=0 (114)
Doo Dop! Dao :

£

The qualifying equations take then the form
-—-2(1,2 - Be _ 72 = 2-812“.'2

a(p? — 72) =

|
(@)

(115)
(@2 - BE)(GE - 72) = B34K4 - Nknz

For the special—orthotropic plate (the buckling equation (Ia) holds
in the same form for the general asg well as for the special—orthotropic
plate), the exact relation

Dy = —— = "2—2 (B2 + 1332) (116)

1s obtained, since o = 0.
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The wave length is

i k=X L
2 B3

and (117)

o'l

=B3

For this particular case between D23'/D22' and D33'/D22', the

relation

D,,"\° D
2
o 23 3 (114a)
Dop! Dop’
is defined by equation (11k4).
Hence by equations (76)
D ] D, ne
2
B2 =32=1(3- 33 )-1- (5-§T> (118)
Dot 22

22
Insertion of these values in (116) gives for the buckling load

2
2 Daat Dp3!
t
Dop Do’
and for the buckling length
1/2 1/2
. D 1 D, L ANe]
L_p, = [i3-233 = [1 (=23 (120)
b 3 2 Dot D1
22 20

M D IR BEEI D NIEEN BRSSO GO0 .
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The equation (119) represents a number of exact buckling loads,
which in figure 25 lie again on a straight line (denoted with sub—

o D
soript By = 0). In'the particular cage —o7 = O end By = O, the

22

values ny = 72 and %-= 1 wvalid for the isotropic plate are obtained
D33’

op'

for = 0.

(¢) For the comparison of the exact with the approximate solution,
it 1g further of interest that the approximation formula w (equation 93)
for the buckling surface for the two particular cases treated in (a)
and (b) satisfy the boundary conditions of the problem and yields the
buckling loads which agree with the exact values. Accordingly 1t may
be presumed that the approximated results in the vicinity of these
particular cases themgelves do not differ very much from the exact values.

Introducing the approximation formula for w

- 1Y gip & —
w=A Sin,b gin I (x —€y) (93)

in the boundary conditions for the gupported plate

- -b = -2
(1) w=0 for y = 3 and y =-3
Fw
(2) My = Dyo! —— + Doyt ﬁ + 2D23' —_— =0 (121)
dx? dy= Axdy
_b __b
for y = 5 and y = 5
it follows
(1) that w = 0 1is always satisfied for y = g- and y = —‘%
Pw ' b b '
(2) that S—E disappears for y = 5 and y = — 5» leaving as
y 122
condition . ( )
o)
Dy, 2“ + 2D23' 62“ =0 for y= % and y = —-%

6y oxy



72 NACA TM 1263

After inserting Baw/ay2 and 62w/8x6y, it is &pparent that equa—
tion (112) can be satisfied only when the relation

€ = — (123)
Do
1g valid.
Dy '
The case € = 5—37 = 0 yields from the approximation equation the
22

buckling load

33 (101)

already derived in section B, II, 2 and which agrees with the exact
result.

Do,t '
The relation € = D23' introduced in the approximate equation (96)
22 :

gives the buckling lengths

2 D"
L 1 33 . (120a)

272075 v
22

lon

From equation (97), further follows the relation

2

Doy ! Das?
2 23' = 33' +1=0 (114p)
Doo Dop

and from equation (98) the buckling load

D 1
ﬁ 3 - _:ﬁ_. (]_]_9&)

Dpo'!

I =
X 2
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The expressionsg for L2/b2 and nx obtained from the approximate

eqnations with the condition 5—3— are therefore in agreement with
L 20, .
the exact valuea for the specific case Bp ='O. That this actually is

the case follows from the equation (11k4b) which is identical with the
qualifying equation Bo = O.

These considerations indicate that for By = O the approximate

solution agrees w1th the exact solutlon as obtalned by the differential
equation. The nodal lines of the buckling surface are actually straight
lines — which 1s not the case as a rule -~ running at an angle with
regpect to the axis, and the tangent of which 1s exactly equal to

D23'/D22'0

In figure 26, the buckling loads n, are shown plotted against
D23'/D22' as abscigsa and D33'/D%2" as parameter. It is seen that
the buckling load 1s maximum for 523— = 0, that 1s, for plates of equal

22
stiffness in pr1nc1pal axes directions (cf. equation (24b)), and that
the buckling load decreases with increasing (absolute) value D23'/D22 »

that is, increasing difference in stiffness in the principal axes direc—
tions of the plate, and asgumes the value zero in the cage of vanisghing

D 1
flexural stiffness in one principal axis direction < 23

Dpo!

= ﬂ L]

The buckling loads lie within an area defined by the range of
existence of the factors Dp3'/Dyp' and D33 '/Dopt (fig. 5a). The

boundary lines of the existence range shown in figures 25 and 26 represent
the boundary lines traced in these diagrams. Since the compressive load
1s symmetrical with the longltudinal axis of the plate, the buckling

1 ]
loads for o = 45° D > o) and o = 135° 23 < 0/ are the same.
o0 Dop!

Doyt Daa'
Therefore, the two boundary lines —2-37 = l<1 + _.31.3_> and

D y 1
22 D22
Doyt Dast\
fréT'='— % 1+ 33 merge into one line.
22 D22'
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The half-wave length L/b, that is, the spacing of the nodal lines
of the elastic surface of the buckled plate, was also computed from
equation (96) by the approximate method and plotted against D23'/D22'

and D33'/Dys' in figure 27.

The exact value of the half-wave lengths corrésponds to the value &k
obtained in the determination of the buckling loads for which n, become:
a minimum (fig. 23). The comnection between IL/b and k 1is apparent
from the equation (70) for the exact formula of the elastic surface;

ir L
gince elna ig a periodic function, the half wave L must be equal to
half the period of the function, heace

L _ L_2n
k= = m, and T == (124)
Dps3?
The half—wave lengths for Y = 0 and B, = 0 1in figure 27
22 -

again represent exact values. They indicate that the error introduced
by the approximate solution is rather small and exceeds no more than
1 percent in the analyzed cases.

D23'

1

Do

equal flexural stiffness in both principal axes directlons the half-—

Figure 27 indicates that for = 0, that is, on plates with

wave length is % = 1, while with increasing D23'/D22', that 1s, growing
difference in principal flexural stiffnesses, 'L/b decreages, and that
in the extreme case of vanishing flexural gtiffness along one principal
D 1
. 2
axis

= xl1, L/b drops to zero. The boundary lines of the exlstence
1

Dop
range are also shown.

The value €, that is, the tangent to the angle formed by the
straight nodal lines of the approximated buckling surface of the plate
running obliquely to the x axis with the y axis, can be taken from
figure 28. The straight line according to the approximation equation (93)
reproduces in general, the actually forming nodal line only approximately.

D t
It is only in the cases 23| =0 and 32 = O that the nodal lines at
Do
D231
angle ¢ = 0 and € = + are actually straight lines, because in these
22

i..stances the approximation formula for the elastic surface is exactly correc
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Figure 28 indicates that the value € becomes zero also for

DAt
2 :
——i— = 0, that ig, the nodal lines are at right angles to the edges, as

D 1

22
is readily apparent in view of the symmetrical structure of the plate.
In all other cases, the nodal lines run obliquely to the edges even
under pure compression, similar to the case of the buckled isotropic
plate loaded in shear. As D23'/D22' increases, the value € increases,

Doyt
to reach in the extreme case of 5537 = 31 +the value unity, the slope of
: 2 ' . '
the nodal lines to reach the value 45°. The boundary lines of the

exigtence range are included. B

2. Results for Pure Shear

The buckling loads Dyy of the infinitely long orthotroplc plate

gtrip, freely supported at the longitudinal edges and stressed in pure
shear, are represented in figures 29 and 30 for w = 45° and w = 135°
plotted againgt the stiffness ratios D23'/D22' and D33'/D22'. The

results were obtalned by the approximate method.

To estimate the error of the approximate relative to the exact
calculation, the buckling loads for a number of sgtiffness combinations
were computed by the exact method and plotted in figure 29a. In table 3,
the exact result is compared with the approximate values. The com—
parison indicateg that the result of the approximate calculation, espe—
cially at higher values of D23'/D22' is no longer 1n as good an agree-—

ment with the exact values as for compressive loading. In the particular
Doy '
case 23

i 0, it is found that the exact results for the special-—

Dop
orthotroplc plate can equally be applied to the plate oriented at 450.

For the case of pure shear with D23'/D22', the qualifying equa-
tions (75¢c) take the form : .

D t
—Ea? - 52 -— 72 =2 33 n2
Dop!
(o = B2 (e® = 77) = &*
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The equations are in agreement with equation (75d) of the special—
orthotropic plate, when bearing in mind that, instead of the stiffness
ratios D33/D22 and Dll/D22 referred to the principal axes directions,

the values D33'/D22" and. Dll'/Dgz' referred to o = 45° appear now,
D 4

and that —= =1 for o = 45°.
Doot

The exact buckling loads computed for the special—orthotropic plate

D L
by Seydel (reference 3) are also valid, provided 5237 = 0, for the
22
orthotropic plate with direction of fibers at 45°. The plate value
D33/fD11Dpp agaln changes to D33'/Dpol.

The unusual feature in figure 30 is the fact that the magnitude of
the buckling loads in shear is essentially dependent upon the position
of the principal axis of the greater bending stiffness with respect to
the direction of the shear loading. Figure 31 represents two orthotropic
plates of equal stiffness, one with the principal axis of maximum
stiffness at 459, the other at 135o relative to the plate edges.

At ©=45° E._> E < 0 according
Do

11 ooy 85 Seen in figure 31, and

D t
to equation (24b); the buckling load — for equal stiffness ratio D33' -
22

agsumes, according to figure 30, substantially higher values than for

w = 1350, where Eq;; < E22 and hence

In practical application, it means that by suitable orientation of
the principal axis of maximum stiffness relative to the direction of
the shear loads a substantial Increase in the critical shear load of
the plate can be obtained.

Figure 31 shows the ratio of the shear loads for these two cases
plotted against the stiffness ratio D23'/D22'. The increase 1n buckling

load of one over the other is readily seen. It assumes very considerable
D. H

values with increasing 'EQT — that is, with increasing difference of
Dop

gtiffness in the directions of the principal axes.
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In figure 32 the approximated half-wave lengths of the buckling
surface formed under the critical load are represented in comparison
with the exact values for several stiffness combinations of table 3.
The agreement is very good.

The approximate value ¢ of the slope of the nodal lines of the
buckling surface can be taken from figure 33.

3. Buckling Loads of Plywood

The stiffness values for w = 45° were computed on several plywood
plates of different construction with the moduli of elasticity indicated
in figure 14, and the buckling stresses, half-wave lengths and nodal
line inclinations determined for compression and shear loading with the
aid of figures 25 to 28 and 29 to 33. The results were then plotted
against the plywood construction in figures 34 and 35.

4. Example

The application of the results described in sections 1 and 2 is
illustrated on a worked—out model problem:

Congider a very long, freely supported plywood plate built up of
three identically thick plies, the grainsg of which are oriented at
o = 45° and 135° relative to the plate edge. The plate is b = 2a = 10 cm .
in height, by s =1 mm in wall thickness.

Young's modulus E for the principal axes of the plate can be
determined by experiment or taken from figure 1k4.

According to figure 14, they are:

By = 176,500 k—g—e—
cm
K,
Epn = 11,500 —&-
cm
vy = 0.196
Voo = 0.0130
k
G = 10,500 —=-
cm
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With these data, the stiffness values for the axes at 450 can be
computed by (29&) and (33)

E + Enp + 2v--E
Dll' D22'- = :I,E;E G + % 11 22 11 22)
L= vnve,

3

(10,500 + 47,300) = i—e 57,800 = 4.81 kgem

v . 83 _G+1E11+E22+211 22+1E11+E22‘2V11E22
330 " 12 N 2
S RS 1= Vy9Vpp
83 53
=15 (—=10,500 + 47,300 + 91,000) = r 127,800 = 10.64 kgcm
Ens — E
Dygt = Dpgt = ig %——23-—1—1 = - -_?l’% 40,550 = —3.38 kgem for w = 45°
+ = V11V

-and

QE 40,550 = 3.38 kgem for w = 135o
2

With these values the gtiffness ratios become

D | §
—237 =z 3.38 = 0,701
Doo 4.81
D 1
33" _ 10.6k - 2.0
D ! 4.81

22
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The buckling locad of thé plate stressed in compregsion for this

I pair of values follows then from figure 25 as
i».. e e o )
g Nya

&E - Ny = T ‘89
5 . 22

i '

R

by and hence the buckling stress as

U =F£=
X ]

ngDpp' _ 6.89 x 4.81
a’s 25 x 0.1

- 13.3 kg/cm®

The half-wave length of the wrinkles follows from figure 27:

L==Db=0.87 x10 = 8.17 cm

o'

For the plate gstressed 1n shear, figures 29 and 32 show

(1) for o = 45°

_ Dxy _ NyyDoo' _ .56 x 4.81 _ 8.8 kg/cm?

T

g acg 25 x 0.1
and
L'=%b =1,76 X 10 = 17.6 cn
(2) for o = 135°
_'D ]
T = DxyPeo' | 31.65 x 4.81 _ ¢ e/ o
acg 25 X 0.1
and
- L=%‘-b=0.89x10=8.9cm
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D. BUCKLING LOADS OF THE GENERAL GRTHOEROPIC PLATE REFERRED TO

(PLYWOOD OF VARYING CONSTRUCTION)

In view of the large amount of paper work involved in a general
repregentation of the buckling loads of the general orthotropic plate
relative to the stiffness factors and angle , due to the great number
of parameters, the characteristic relationship between the buckling
loads and the angle ® 1is exemplified on a worked out model problem.

The results were obtained by approximation method, the known exact
values for o = 0°, h5o, and 90O are also given for comparison. The
results are again limited to a very long plate strip freely supported
at the edges.

The calculation is based on the modulus of elagticity of plywood
gtregsed in bending, indicated in table 1.

1. Results for Pure Compression -

In figure 36 the buckling stresses in pure compression are repre—
sented for w = 0° to 180°. Owing to the symmetry of the compressive
loading, the buckling stresses are symmetrical to the value o = 90°,
They are of equal magnitude for plywood with and across the grain
(v = 0° and 90°) and increase for intermediate angles . The maximum
buckling stress for plywood of very many laminations (o) is reactied at
o = 45° and 1359, respectively.

The half-—wave lengths of the plate represented in figure 37 indicate
that, if the plate consists of a few plies, the buckling length, with
the grain, is greater than across the grain. The buckling load increased
by the greater longitudinal stiffness at = 0° relative to w = 90°,
1s reduced again by the greater buckling length so that the buckling
loads are the same again in spite of the substantially different longi-—
tudinal stiffnesses for = 0° and o = 90°.

The ensulng average nodal lines which, as under compressive loading,
are inclined to the plate edges according to section IITIc, and at right
angles to the edges, in a few specific cases only, are shown in figure 38.

2. Results for Pure Shear Loading

On account of the unsymmetry of the shear loading the buckling
stresses are no longer symmetrical to w = 90°.
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The close relationship existing between shearing stresses and
angle ® - especlally for plywood with few laminations — is seen from
figure 39. Owlng to the unsymmetry of the plywood structure as well as
‘to the shear- loading, ‘the maximum shearing stress occurs at about 60°
rather than for o = 45°. ' :

The half-wave lengths and the slope of the nodal lines in fig—
ures 40 and 41 also exhibit a marked dependence on angle , the half-

wave length — for three—plywood — fluctuates between %-= 2.64 and 0.56.

For an egtimate of the error Introduced by the approximate as
against the exact solution, the exact values for "o = 0° and 90° are
repregented in figures 39 and 40 according to the results by Seydel and
for w = 45° according to figure 29. For w = 45° the maximum error
is 12 percent; for other cases the error is leas. The agreement between
the approximated and the exact half-wave lengths is remarkably good. The
approximate calculation which 1nvolves incomparably less paper work than
the exact solutlon yields a very good insight into the relatlionship
between the buckling stresses and buckling lengths and angle w, notwith—
gstanding the cited differences.

Tranglated by J. Vanier
National Advisory Committee
for Aeronautics
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TABLE 1.~ EFFECT OF FLATE CONSTRUCTION OF FLANE AND FLEXURALLY

STRESSED PLYWOOD PLATES ON THE MODULI OF ELASTICITY

Plate Stressed in plans

Plate stressed in bending

Number of w=0° = 45° @ = 0° w = 45°
plies D D -
Epyp (B | Va1 | Yee G [En' =Exp'fViyt =Ver!| & B B |vn [vee |G [En' - Foo'lvir' = Vo' ¢

1 0 180,000} 5,000{0.45 [0.0125[10,500f 11,700 -0.113 4,750|0 180,000{ 5,000{0.45 }0.0125{10,500] 11,700 ~0,113 L, 750
3 0.5 [121,600}63,%00]0.0355[0.0185(10,500} 33,780 0.604  [40,6700.0385[173,500]11,500{0.1959(0.0130|10,500| 21,570 0.035 |10,520
5 0.667]110;000{75,000|0.0301 J0.0205[10,500| 34,210 0.626  |43,520]0.263 {143,600|41,400|0.05440.0157]|10,500] 31,900 0.516  |31,370
7 0.75 {105,000|80,000{0.0281 [0.0214 |10,500] 34,330 0.631  {4k,340]0.406 {129,500{55,500}0.0405(0.0174|20,500f 33,300 0.576  [37,9%0
]i 0.833}100,400{8k,600{0.02660.0224 [10,500f 3k4,400 0.635  |U4k,820|0.573 |116,200{68,800(0.0327/0.0194[10,500 34,050 0.616  |42,180
© 1.00 { 92,500]|92,500{0.02%3[0.0243]10,500] 3k,460 0,637 |45,1k0[1.000 | 92,500(92,500{0.0243|0.0243}10,500| 3%,460 0.637 {45,140
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TABLE 2.— BUCKLING LOADS OF THE SPECTAL—ORTHOTROPIC FPLATE STRIP,

IN PURE COMPRESSION VERSUS CHARACTERISTIC VALUE OF THE PLATE

Supported Clamped plate
Characteristic plate approximateion according to
value 9
Exact values|Exact values|Equation (87)|Equation (87a)

0 %? = 4,935 %? = 4.935 6.60 5.80

0.1 5.43 6.69 Tk 6.94

0.2 5.92 7.98 8.88 8.08

0.3 6.42 9.15 10.02 9.22

0.k 6.91 10.35 11.16 10.36

0.6 7.90 12.64 13.44 12.64
0.707 8.42 13.88 14.58 13.88

0.8 8.88 1h.92 15.72 1h.92

0.9 9.38 16.06 16.86 16.06

1.0 7€ = 9.87 17.20 18.00 17.20
1.414 11.91 21.96 22.72 21.92
1.582 12.74 23.95 24,61 23.82

2.0 14.81 28.52 29.40 28.60

2.5 17.27 34.00 35.10 34.30

3.33 21.38 43,22 4y 58 43,80

5.0 29.61 61.75 63.60 62.80




TABLE 3.~ COMPARISON CF THE RESULTS FOR PURE SHEAR (o = 45°) ACCORDING TO THE

APPROXTMATE METHOD WITH THE ACTUAL RESULTS

1 1 t
Egi_ =1.0 ?Eé_ = 0.5 ?E__ =0 ?Eg_ = -0.5 ?22_ = _i_o’
Dap Doy Dap 2o Do
Exact | Approximate Exact Approximate 1pxact Approximate Exapt Approximate { Exact Approximate
D33’ ’
L L L L L L L L L 4L
Dop! 3o Oxy | 3 Py | 3 y | % Ny b y | T Sy 1% "oy | % %y |3 nxyﬁ 5
0 fem=|==| =-m | Am reemefemmee [ meee [ 8.125[1,025| 8.77]1.021 [--===| ====-f -===- el haEtt R I -
1 f---{--] --- -- 2.32)wmcmm 2.37/0.43 |13.165|1.245 13.98]1.225 [20.96| 1.45 [ 23.40] 1.45 {----- R e ——-
= DT B - 8.07|1.126| 8.2211.105 {17.25 |1.462] 18.2211.455 124.87) 1.69 | 27.40)| 1.66 j~---- B I ———-
3 0|0 0 0 |12.06{1.45 | 12.35|1.414 {20.50 [1.715| 21.80{1.682 |28.19| 1.911f 30.78| 1.86 |34.56{1.98| 39.50] 2.00

lAccording to Seydel (reference 3), figure %a and 6a.
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Figure 2.- Stresses on an orthotropic plate element.
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Figures 3(a) and (b).- Strains on an orthotropic plate element.
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Figure 5(b).- Section moment of a plate element.
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Figure 10.- Construction of a plywood element.
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Figure 11,- For determining the modulus of rigidity of plywood.
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Figure 12.- Division of plywood into its proportional laminations.

€9CT WL VOVN

€6




L———h—-ﬁ'

/_exfl)

oF

, Across the ,
1 groin ¢

Figure 13.- Assumed flexural strain distribution of plywood.

%6

€92T WL VOVN



-4

NACA TM 1263 _ 95

/50000

Enlw=02)

-

£,6 (kg/cm?) -

£, 2100000
/00000 04 _

%= %, (w=45°)

£2=70000

£ (@w=0%)

Glw=-45%)

ey —_l
g @ty

:5,; =30000
7// (‘Ul 0‘)

G(w=0% /-?’u (w-07)

D - Plane stress.—@—c—— @ . @‘ﬁ .

or o2 @gt-{s a.(db 05 |06 07 48 09

——®=—[- Bending stress
@ = Number of laminations

osteld-——_L

Figure 14.- Va.riation of modulus of elasticity of a plywood plate under loads
at 0° and 45° plotted against construction of plate.
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Irigure 21.- Orthoiropic plate strip loaded in tension and shear.
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Figure 22.- Buckling loads of a special-orthotropic plate under axial stress.
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Figure 25.- Buckling load of orthotropic plate strip under axial forces
(w=45° and 135°) (approximate values for free support).
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Figure 27.- Half-wave lengths of an orthotropic plate strip under axial forces
(w = 45° and 1359) (approximate values for free support).
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Figure 29.,- Buckling load of orthotropic plate strip loaded in shear (v = 45°
and 135°) (approximate values for free support).
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Figure 37.- Buckling length of freely supported plywood strip loaded in
compression plotted against construction of plywood and w (approximate
values).
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